6372-42-5Relevant articles and documents
Synthesis method of phosphine (III) compound
-
Paragraph 0020, (2021/11/27)
The invention aims to provide an aryl phosphine oxide compound as a raw material, wherein P=O keys are activated by an acid anhydride and alkali is continued. The preparation of the phosphine (III) compound is carried out under the action of a crown ether and a reducing agent. The method has the advantages of cheap and easily available raw materials, simple operation, high atomic economy and the like. Compared with a traditional reduction mode, the method is ingenious in design, waste emission is reduced, separation of intermediate products is omitted, and related reagents such as silicon hydrogen, aluminum, boron and the like with higher price can be avoided. And the reaction suitability is extensive.
A Lewis Base Nucleofugality Parameter, NFB, and Its Application in an Analysis of MIDA-Boronate Hydrolysis Kinetics
García-Domínguez, Andrés,Gonzalez, Jorge A.,Leach, Andrew G.,Lloyd-Jones, Guy C.,Nichol, Gary S.,Taylor, Nicholas P.
supporting information, (2022/01/04)
The kinetics of quinuclidine displacement of BH3 from a wide range of Lewis base borane adducts have been measured. Parameterization of these rates has enabled the development of a nucleofugality scale (NFB), shown to quantify and predict the leaving group ability of a range of other Lewis bases. Additivity observed across a number of series R′3-nRnX (X = P, N; R′ = aryl, alkyl) has allowed the formulation of related substituent parameters (nfPB, nfAB), providing a means of calculating NFB values for a range of Lewis bases that extends far beyond those experimentally derived. The utility of the nucleofugality parameter is explored by the correlation of the substituent parameter nfPB with the hydrolyses rates of a series of alkyl and aryl MIDA boronates under neutral conditions. This has allowed the identification of MIDA boronates with heteroatoms proximal to the reacting center, showing unusual kinetic lability or stability to hydrolysis.
Direct and Scalable Electroreduction of Triphenylphosphine Oxide to Triphenylphosphine
Manabe, Shuhei,Sevov, Christo S.,Wong, Curt M.
, p. 3024 - 3031 (2020/03/10)
The direct and scalable electroreduction of triphenylphosphine oxide (TPPO)-the stoichiometric byproduct of some of the most common synthetic organic reactions-to triphenylphosphine (TPP) remains an unmet challenge that would dramatically reduce the cost and waste associated with performing desirable reactions that are mediated by TPP on a large scale. This report details an electrochemical methodology for the single-step reduction of TPPO to TPP using an aluminum anode in combination with a supporting electrolyte that continuously regenerates a Lewis acid from the products of anodic oxidation. The resulting Lewis acid activates TPPO for reduction at mild potentials and promotes P-O over P-C bond cleavage to selectively form TPP over other byproducts. Finally, this robust methodology is applied to (i) the reduction of synthetically useful classes of phosphine oxides, (ii) the one-pot recycling of TPPO generated from a Wittig reaction, and (iii) the gram-scale reduction of TPPO at high concentration (1 M) with continuous product extraction and in flow at high current density.
Versatile Visible-Light-Driven Synthesis of Asymmetrical Phosphines and Phosphonium Salts
Arockiam, Percia Beatrice,Lennert, Ulrich,Graf, Christina,Rothfelder, Robin,Scott, Daniel J.,Fischer, Tillmann G.,Zeitler, Kirsten,Wolf, Robert
supporting information, p. 16374 - 16382 (2020/11/03)
Asymmetrically substituted tertiary phosphines and quaternary phosphonium salts are used extensively in applications throughout industry and academia. Despite their significance, classical methods to synthesize such compounds often demand either harsh reaction conditions, prefunctionalization of starting materials, highly sensitive organometallic reagents, or expensive transition-metal catalysts. Mild, practical methods thus remain elusive, despite being of great current interest. Herein, we describe a visible-light-driven method to form these products from secondary and primary phosphines. Using an inexpensive organic photocatalyst and blue-light irradiation, arylphosphines can be both alkylated and arylated using commercially available organohalides. In addition, the same organocatalyst can be used to transform white phosphorus (P4) directly into symmetrical aryl phosphines and phosphonium salts in a single reaction step, which has previously only been possible using precious metal catalysis.
Ready Approach to Organophosphines from ArCl via Selective Cleavage of C-P Bonds by Sodium
Ye, Jingjing,Zhang, Jian-Qiu,Saga, Yuta,Onozawa, Shunya,Kobayashi, Shu,Sato, Kazuhiko,Fukaya, Norihisa,Han, Li-Biao
, p. 2682 - 2694 (2020/07/30)
The preparation, application, and reaction mechanism of sodium phosphide R2PNa and other alkali metal phosphides R2PM (M = Li and K) have been studied. R2PNa could be prepared, accurately and selectively, via the reactions of SD (sodium finely dispersed in mineral oil) with phosphinites R2POR′ and chlorophosphines R2PCl. R2PNa could also be prepared from triarylphosphines and diarylphosphines via the selective cleavage of C-P bonds. Na was superior to Li and K for these reactions. R2PNa reacted with a variety of ArCl to efficiently produce R2PAr. ArCl is superior to ArBr and ArI since they only gave low yields of the products. In addition, Ph2PNa is superior to Ph2PLi and Ph2PK since Ph2PLi did not produce the coupling product with PhCl, while Ph2PK only gave a low yield of the product. An electron-withdrawing group on the benzene ring of ArCl greatly accelerated the reactions with R2PNa, while an alkyl group reduced the reactivity. Vinyl chloride and alkyl chlorides RCl also reacted efficiently. While t-BuCl did not produce the corresponding product, admantyl halides could give the corresponding phosphine in high yields. A wide range of phosphines were prepared by this method from the corresponding chlorides. Unsymmetric phosphines could also be conveniently generated in one pot starting from Ph3P. Chiral phosphines were also obtained in good yields from the reactions of menthyl chlorides with R2PNa. Possible mechanistic pathways were given for the reductive cleavage of R3P by sodium generating R2PNa and the substitution reactions of R2PNa with ArCl generating R2PAr.
Ln(ii) amido complexes coordinated by ring-expanded N-heterocyclic carbenes-promising catalysts for olefin hydrophosphination
Lapshin, Ivan V.,Cherkasov, Anton V.,Asachenko, Andrey F.,Trifonov, Alexander A.
supporting information, p. 12913 - 12916 (2020/11/05)
First Ln(ii) ring-expanded NHC complexes (er-NHC)Ln[N(SiMe3)2]2 (Ln = Sm, Yb) are synthesized and proved to be highly efficient pre-catalysts for the intermolecular hydrophosphination of such indolent substrates as 1-alkenes, cyclohexene and norbornene. This journal is
Method for preparation of alkyl phosphonyl compound from peroxide
-
, (2019/10/01)
The invention discloses a method for preparation of an alkyl phosphonyl compound from peroxide. The invention adopts an acyl peroxide as the starting material, and the raw material is easily availableand has a great variety. The product obtained by the method provided by the invention has a great variety and wide uses. Some of the products can be reduced simply into important phosphorus ligands and key pharmaceutical intermediates. In addition, the method avoids the use of high toxicity phosphine reagent, has the characteristics of mild reaction conditions, simple operation, high target product yield, low pollution, simple reaction operation and post-treatment process, and is suitable for industrial production.
Preparation method of alkyl phosphorylated substances
-
Paragraph 0023, (2019/10/04)
The invention discloses a preparation method of alkyl phosphorylated substances. According to the invention, alkyl carboxylic acid is used as a starting material, and raw materials are easy to obtain and are various in types. Products prepared by the method disclosed by the invention are various in types and wide in application; and a part of the products can be prepared into important phosphorus ligands and drug key intermediates through simple reduction. In addition, use of high-toxicity phosphine reagents is avoided in the method, the reaction conditions are mild, operation is simple, the yield of the target product is high, pollution is small, and the reaction operation and post-treatment processes are simple, so that the method is suitable for industrial production.
Decarboxylative Phosphine Synthesis: Insights into the Catalytic, Autocatalytic, and Inhibitory Roles of Additives and Intermediates
Jin, Shengfei,Haug, Graham C.,Nguyen, Vu T.,Flores-Hansen, Carsten,Arman, Hadi D.,Larionov, Oleg V.
, p. 9764 - 9774 (2019/10/14)
Phosphines are among the most widely used ligands, catalysts, and reagents. Current synthetic approaches to phosphines are dominated by nucleophilic displacement reactions with organometallic reagents. Here, we report a radical-based approach to phosphines that proceeds by a cross-electrophile coupling of chlorophosphines and redox-active esters. The reaction allows for the synthesis of a broad range of substituted phosphines that were not readily attainable with the present methods. Our experimental and DFT computational studies also clarified the catalytic, autocatalytic, and inhibitory roles of additives and intermediates, as well as the mechanistic details of the photocatalytic and zinc-mediated redox modes that can have implications for the mechanistic interpretation of other cross-electrophile coupling reactions.
Photocatalytic Hydrophosphination of Alkenes and Alkynes Using Diphenylphosphine and Triamidoamine-Supported Zirconium
Novas, Bryan T.,Bange, Christine A.,Waterman, Rory
supporting information, p. 1640 - 1643 (2019/01/04)
Reactions of alkene or alkyne with diphenylphosphine and catalytic [κ5-N,N,N,N,C-(Me3SiNCH2CH2)2NCH2CH2NSiMe2CH2]Zr (1) are greatly enhanced under photolysis, providing viable catalytic hydrophosphination with a broad substrate scope. Whereas diphenylphosphine had been an inaccessible substrate under thermal conditions, complete conversion of alkene substrates to tertiary phosphine is achieved in as little as four hours at ambient temperature with 1 under ultraviolet irradiation. Previously inactive alkenes are now hydrophosphination substrates with diphenylphosphine to produce tertiary phosphine ligands possessing tunable steric and electronic properties.