20989-17-7Relevant articles and documents
Enantioselective liquid-liquid extraction of (R,S)-phenylglycinol using a bisnaphthyl phosphoric acid derivative as chiral extractant
Schuur, Boelo,Verkuijl, Bastiaan J.V.,Bokhove, Jeroen,Minnaard, Adriaan J.,De Vries, Johannes G.,Heeres, Hero J.,Feringa, Ben L.
, p. 462 - 470 (2011)
This study demonstrates that enantioseparation by liquid-liquid extraction can be done in a continuous flow mode on both laboratory and industrial scale and is a promising technique that could become a competitive alternative for crystallization or chromatographic approaches. We studied the enantioselective liquid-liquid extraction of phenylglycinol (Pgl) using a bisnaphthyl phosphoric acid extractant. Batch experiments were performed to estimate extraction model parameters. The system was described using an extraction mechanism with homogeneous organic phase complexation. The complexation constants were very large, in the order of 108-1010 L/mol in the temperature range 279T303 K. The developed model was then used to design a multistage countercurrent extraction process with Centrifugal Contactor Separator (CCS) equipment. This study demonstrates that high purity (70% ee) with a reasonable yield (36%) can be obtained for a moderately selective system (α=1.7) with only six extraction stages. The technology is potentially applicable to a wide range of racemates. Copyright
Construction and activity evaluation of novel benzodioxane derivatives as dual-target antifungal inhibitors
An, Yunfei,Fan, Haiyan,Han, Jun,Liu, Wenxia,Sun, Bin,Xie, Honglei
, (2021/11/09)
Ergosterol exert the important function in maintaining the fluidity and osmotic pressure of fungal cells, and its key biosynthesis enzymes (Squalene epoxidase, SE; 14 α-demethylase, CYP51) displayed the obvious synergistic effects. Therefore, we expected to discover the novel antifungal compounds with dual-target (SE/CYP51) inhibitory activity. In the progress, we screened the different kinds of potent fragments based on the dual-target (CYP51, SE) features, and the method of fragment-based drug discovery (FBDD) was used to guide the construction of three different series of benzodioxane compounds. Subsequently, their chemical structures were synthesized and evaluated. These compounds displayed the obvious biological activity against the pathogenic fungal strains. Notably, target compounds 10a-2 and 22a-2 possessed the excellent broad-spectrum anti-fungal activity (MIC50, 0.125–2.0 μg/mL) and the activity against drug-resistant strains (MIC50, 0.5–2.0 μg/mL). Preliminary mechanism studies have confirmed that these compounds effectively inhibited the dual-target (SE/CYP51) activity, they could cause fungal rupture and death by blocking the bio-synthetic pathway of ergosterol. Further experiments discovered that compounds 10a-2 and 22a-2 also maintained a certain of anti-fungal effect in vivo. In summary, this study not only provided the new dual-target drug design strategy and method, but also discover the potential antifungal compounds.
Construction and activity evaluation of novel dual-target (SE/CYP51) anti-fungal agents containing amide naphthyl structure
An, Yunfei,Fan, Haiyan,Han, Jun,Liu, Wenxia,Liu, Yating,Sun, Bin,Sun, Zhuang
, (2021/11/16)
With the increase of fungal infection and drug resistance, it is becoming an urgent task to discover the highly effective antifungal drugs. In the study, we selected the key ergosterol bio-synthetic enzymes (Squalene epoxidase, SE; 14 α-demethylase, CYP51) as dual-target receptors to guide the construction of novel antifungal compounds, which could achieve the purpose of improving drug efficacy and reducing drug-resistance. Three different series of amide naphthyl compounds were generated through the method of skeleton growth, and their corresponding target products were synthesized. Most of compounds displayed the obvious biological activity against different Candida spp. and Aspergillus fumigatus. Among of them, target compounds 14a-2 and 20b-2 not only possessed the excellent broad-spectrum anti-fungal activity (MIC50, 0.125–2 μg/mL), but also maintained the anti-drug-resistant fungal activity (MIC50, 1–4 μg/mL). Preliminary mechanism study revealed the compounds (14a-2, 20b-2) could block the bio-synthetic pathway of ergosterol by inhibiting the dual-target (SE/CYP51) activity, and this finally caused the cleavage and death of fungal cells. In addition, we also discovered that compounds 14a-2 and 20b-2 with low toxic and side effects could exert the excellent therapeutic effect in mice model of fungal infection, which was worthy for further in-depth study.
Preparation method of S-4-phenyl-2-oxazolidinone
-
Paragraph 0016-0020, (2021/05/01)
The invention discloses a preparation method of S-4-phenyl-2-azolidinone. The preparation method comprises the following steps: reducing a compound 8 by potassium borohydride under acidic conditions to obtain a compound 9, and cyclizing the compound 9 and diethyl carbonate under alkaline conditions to obtain a compound 10, thereby obtaining (s)-4-phenyl-2-azolidinone. The raw materials used in the preparation method are easy to obtain, the reaction conditions are mild, the steps are simple, flammable and explosive reagents are not used, and the preparation method is suitable for large-scale industrial production and high in safety; the reaction yield is higher, and the cost is lower. Wide application prospects are realized.
Preparation method of oxazolidinone compound
-
, (2021/11/10)
The preparation method comprises the following steps 1): dissolving aromatic amino acid in methanol, dissolving the aromatic amino acid in methanol, heating up to 50 - 60 °C heat preservation 1 - 2h, 2) reducing: adding a catalytic amount of lithium salt in ethanol water as a solvent. 3) Ring-closing: toluene is used as a solvent, a reduction product and diethyl carbonate are added to 100 °C, a sodium methoxide solution is added dropwise, and the product is obtained after completion of the dropwise addition and after-treatment and purification after completion of the normal pressure distillation to the temperature of 100 °C heat preservation. The lithium salt is introduced to participate in the reaction, sodium borohydride is selected as a solvent, sodium borohydride is completely dissolved, and the lithium salt can be free from the compound to improve the reaction activity, so that the use amount of sodium borohydride is reduced to 2 equivalent, and the production cost is remarkably reduced.
Enantioselective Cascade Biocatalysis for Deracemization of Racemic β-Amino Alcohols to Enantiopure (S)-β-Amino Alcohols by Employing Cyclohexylamine Oxidase and ω-Transaminase
Zhang, Jian-Dong,Chang, Ya-Wen,Dong, Rui,Yang, Xiao-Xiao,Gao, Li-Li,Li, Jing,Huang, Shuang-Ping,Guo, Xing-Mei,Zhang, Chao-Feng,Chang, Hong-Hong
, p. 124 - 128 (2020/09/21)
Optically active β-amino alcohols are very useful chiral intermediates frequently used in the preparation of pharmaceutically active substances. Here, a novel cyclohexylamine oxidase (ArCHAO) was identified from the genome sequence of Arthrobacter sp. TYUT010-15 with the R-stereoselective deamination activity of β-amino alcohol. ArCHAO was cloned and successfully expressed in E. coli BL21, purified and characterized. Substrate-specific analysis revealed that ArCHAO has high activity (4.15 to 6.34 U mg?1 protein) and excellent enantioselectivity toward the tested β-amino alcohols. By using purified ArCHAO, a wide range of racemic β-amino alcohols were resolved, (S)-β-amino alcohols were obtained in >99 % ee. Deracemization of racemic β-amino alcohols was conducted by ArCHAO-catalyzed enantioselective deamination and transaminase-catalyzed enantioselective amination to afford (S)-β-amino alcohols in excellent conversion (78–94 %) and enantiomeric excess (>99 %). Preparative-scale deracemization was carried out with 50 mM (6.859 g L?1) racemic 2-amino-2-phenylethanol, (S)-2-amino-2-phenylethanol was obtained in 75 % isolated yield and >99 % ee.
Highly Stable Zr(IV)-Based Metal-Organic Frameworks for Chiral Separation in Reversed-Phase Liquid Chromatography
Jiang, Hong,Yang, Kuiwei,Zhao, Xiangxiang,Zhang, Wenqiang,Liu, Yan,Jiang, Jianwen,Cui, Yong
supporting information, p. 390 - 398 (2021/01/13)
Separation of racemic mixtures is of great importance and interest in chemistry and pharmacology. Porous materials including metal-organic frameworks (MOFs) have been widely explored as chiral stationary phases (CSPs) in chiral resolution. However, it remains a challenge to develop new CSPs for reversed-phase high-performance liquid chromatography (RP-HPLC), which is the most popular chromatographic mode and accounts for over 90% of all separations. Here we demonstrated for the first time that highly stable Zr-based MOFs can be efficient CSPs for RP-HPLC. By elaborately designing and synthesizing three tetracarboxylate ligands of enantiopure 1,1′-biphenyl-20-crown-6, we prepared three chiral porous Zr(IV)-MOFs with the framework formula [Zr6O4(OH)8(H2O)4(L)2]. They share the same flu topological structure but channels of different sizes and display excellent tolerance to water, acid, and base. Chiral crown ether moieties are periodically aligned within the framework channels, allowing for stereoselective recognition of guest molecules via supramolecular interactions. Under acidic aqueous eluent conditions, the Zr-MOF-packed HPLC columns provide high resolution, selectivity, and durability for the separation of a variety of model racemates, including unprotected and protected amino acids and N-containing drugs, which are comparable to or even superior to several commercial chiral columns for HPLC separation. DFT calculations suggest that the Zr-MOF provides a confined microenvironment for chiral crown ethers that dictates the separation selectivity.
Bioproduction of Enantiopure (R)- and (S)-2-Phenylglycinols from Styrenes and Renewable Feedstocks
Sekar, Balaji Sundara,Mao, Jiwei,Lukito, Benedict Ryan,Wang, Zilong,Li, Zhi
, p. 1892 - 1903 (2020/12/22)
Enantiopure (R)- and (S)-2-phenylglycinols are important chiral building blocks for pharmaceutical manufacturing. Several chemical and enzymatic methods for their synthesis were reported, either involving multi-step synthesis or starting from a relatively complex chemical. Here, we developed one-pot simple syntheses of enantiopure (R)- and (S)-2-phenylglycinols from cheap starting materials and renewable feedstocks. Enzyme cascades consisting of epoxidation-hydrolysis-oxidation-transamination were developed to convert styrene 2 a to (R)- and (S)-2-phenylglycinol 1 a, with butanediol dehydrogenase for alcohol oxidation as well as BmTA and NfTA for (R)- and (S)-enantioselective transamination, respectively. The engineered E. coli strains expressing the cascades produced 1015 mg/L (R)-1 a in >99% ee and 315 mg/L (S)-1 a in 91% ee, respectively, from styrene 2 a. The same cascade also converted substituted styrenes 2 b–k and indene 2 l into substituted (R)-phenylglycinols 1 b–k and (1R, 2R)-1-amino-2-indanol 1 l in 95–>99% ee. To transform bio-based L-phenylalanine 6 to (R)-1 a and (S)-1 a, (R)- and (S)-enantioselective enzyme cascades for deamination-decarboxylation-epoxidation-hydrolysis-oxidation-transamination were developed. The engineered E. coli strains produced (R)-1 a and (S)-1 a in high ee at 576 mg/L and 356 mg/L, respectively, from L-phenylalanine 6, as the first synthesis of these compounds from a bio-based chemical. Finally, L-phenylalanine biosynthesis pathway was combined with (R)- or (S)-enantioselective cascade in one strain or coupled strains, to achieve the first synthesis of (R)-1 a and (S)-1 a from a renewable feedstock. The coupled strain approach enhanced the production, affording 274 and 384 mg/L (R)-1 a and 274 and 301 mg/L (S)-1 a, from glucose and glycerol, respectively. The developed methods could be potentially useful to produce these high-value chemicals from cheap starting materials and renewable feedstocks in a green and sustainable manner. (Figure presented.).
Copper(I) Phosphinooxazoline Complexes: Impact of the Ligand Substitution and Steric Demand on the Electrochemical and Photophysical Properties
Frey, Wolfgang,Giereth, Robin,Karnahl, Michael,Klo?, Marvin,Mengele, Alexander K.,Steffen, Andreas,Tschierlei, Stefanie
, p. 2675 - 2684 (2020/03/04)
A series of seven homoleptic CuI complexes based on hetero-bidentate P^N ligands was synthesized and comprehensively characterized. In order to study structure–property relationships, the type, size, number and configuration of substituents at the phosphinooxazoline (phox) ligands were systematically varied. To this end, a combination of X-ray diffraction, NMR spectroscopy, steady-state absorption and emission spectroscopy, time-resolved emission spectroscopy, quenching experiments and cyclic voltammetry was used to assess the photophysical and electrochemical properties. Furthermore, time-dependent density functional theory calculations were applied to also analyze the excited state structures and characteristics. Surprisingly, a strong dependency on the chirality of the respective P^N ligand was found, whereas the specific kind and size of the different substituents has only a minor impact on the properties in solution. Most importantly, all complexes except C3 are photostable in solution and show fully reversible redox processes. Sacrificial reductants were applied to demonstrate a successful electron transfer upon light irradiation. These properties render this class of photosensitizers as potential candidates for solar energy conversion issues.
Efficient Access to Chiral 2-Oxazolidinones via Ni-Catalyzed Asymmetric Hydrogenation: Scope Study, Mechanistic Explanation, and Origin of Enantioselectivity
Dong, Xiu-Qin,Liu, Yuanhua,Wang, Heng,Wang, Minyan,Yang, Xuanliang,Yi, Zhiyuan,Yin, Congcong,Zhang, Xumu
, p. 11153 - 11161 (2020/11/23)
Cheap transition metal Ni-catalyzed asymmetric hydrogenation of 2-oxazolones was successfully developed, which provided an efficient synthetic strategy to prepare various chiral 2-oxazolidinones with 95%-99% yields and 97%->99% ee. The gram-scale hydrogenation could be proceeded well with >99% ee in the presence of low catalyst loading (up to 3350 TON). This Ni-catalyzed hydrogenation protocol demonstrated great synthetic utility, and the chiral 2-oxazolidinone product was easily converted to a variety of other important molecules in good yields and without loss of ee values, such as chiral dihydrothiophene-2(3H)-thione, amino alcohol, oxazoline ligand, and allenamide. Moreover, a series of deuterium labeling experiments, control experiments, and DFT calculations were conducted to illustrate a reasonable catalytic mechanism for this Ni-catalyzed asymmetric hydrogenation, which involved a tautomerization between the enamine and its isomer imine and then went through asymmetric 1,2-addition of Ni(II)-H to the preferred imine.