6443-69-2Relevant articles and documents
Direct Hydrodecarboxylation of Aliphatic Carboxylic Acids: Metal- and Light-Free
Burns, David J.,Lee, Ai-Lan,McLean, Euan B.,Mooney, David T.
supporting information, p. 686 - 691 (2022/01/28)
A mild and inexpensive method for direct hydrodecarboxylation of aliphatic carboxylic acids has been developed. The reaction does not require metals, light, or catalysts, rendering the protocol operationally simple, easy to scale, and more sustainable. Crucially, no additional H atom source is required in most cases, while a broad substrate scope and functional group tolerance are observed.
Reactions of benzyltriphenylphosphonium salts under photoredox catalysis
Boldt, Andrew M.,Dickinson, Sidney I.,Ramirez, Jonathan R.,Benz-Weeden, Anna M.,Wilson, David S.,Stevenson, Susan M.
supporting information, p. 7810 - 7815 (2021/09/28)
The development of benzyltriphenylphosphonium salts as alkyl radical precursors using photoredox catalysis is described. Depending on substituents, the benzylic radicals may couple to form C-C bonds or abstract a hydrogen atom to form C-H bonds. A natural product, brittonin A, was also synthesized using this method.
Metal-Free Heterogeneous Semiconductor for Visible-Light Photocatalytic Decarboxylation of Carboxylic Acids
Shi, Jiale,Yuan, Tao,Zheng, Meifang,Wang, Xinchen
, p. 3040 - 3047 (2021/03/09)
A suitable protocol for the photocatalytic decarboxylation of carboxylic acids was developed with metal-free ceramic boron carbon nitrides (BCN). With visible light irradiation, BCN oxidize carboxylic acids to give carbon-centered radicals, which were trapped by hydrogen atom donors or employed in the construction of the carbon-carbon bond. In this system, both (hetero)aromatic and aliphatic acids proceed the decarboxylation smoothly, and C-H, C-D, and C-C bonds are formed in moderate to high yields (35 examples, yield up to 93%). Control experiments support a radical process, and isotopic experiments show that methanol is employed as the hydrogen atom donor. Recycle tests and gram-scale reaction elucidate the practicability of the heterogeneous ceramic BCN photoredox system. It provides an alternative to homogeneous catalysts in the valuable carbon radical intermediates formation. Moreover, the metal-free system is also applicable to late-stage functionalization of anti-inflammatory drugs, such as naproxen and ibuprofen, which enrich the chemical toolbox.
Molybdenum-Catalyzed Deoxygenation Coupling of Lignin-Derived Alcohols for Functionalized Bibenzyl Chemicals
Jiang, Huifang,Lu, Rui,Luo, Xiaolin,Si, Xiaoqin,Xu, Jie,Lu, Fang
supporting information, p. 1292 - 1296 (2020/12/09)
With the growing demand for sustainability and reducing CO2 footprint, lignocellulosic biomass has attracted much attention as a renewable, carbon-neutral and low-cost feedstock for the production of chemicals and fuels. To realize efficient utilization of biomass resource, it is essential to selectively alter the high degree of oxygen functionality of biomass-derivates. Herein, we introduced a novel procedure to transform renewable lignin-derived alcohols to various functionalized bibenzyl chemicals. This strategy relied on a short deoxygenation coupling pathway with economical molybdenum catalyst. A well-designed H-donor experiment was performed to investigate the mechanism of this Mo-catalyzed process. It was proven that benzyl carbon-radical was the most possible intermediate to form the bibenzyl products. It was also discovered that the para methoxy and phenolic hydroxyl groups could stabilize the corresponding radical intermediates and then facilitate to selectively obtain bibenzyl products. Our research provides a promising application to produce functionalized aromatics from biomass-derived materials.
Exhaustive Reduction of Esters Enabled by Nickel Catalysis
Cook, Adam,Prakash, Sekar,Zheng, Yan-Long,Newman, Stephen G.
supporting information, p. 8109 - 8115 (2020/05/20)
We report a one-step procedure to directly reduce unactivated aryl esters into their corresponding tolyl derivatives. This is achieved by an organosilane-mediated ester hydrosilylation reaction and subsequent Ni/NHC-catalyzed hydrogenolysis. The resulting conditions provide a direct and efficient alternative to multi-step procedures for this transformation that often require the use of hazardous metal hydrides. Applications in the synthesis of -CD3-containing products, derivatization of bioactive molecules, and chemoselective reduction in the presence of other C-O bonds are demonstrated.
Hydrogenation of plant polyalkoxybenzene derivatives: convenient access to coenzyme Q0 analogues
Khrustalev, Victor N.,Muravsky, Egor A.,Semenov, Victor V.,Shinkarev, Ilia Yu.,Varakutin, Alexander E.
, p. 599 - 601 (2020/10/18)
A technologically advanced protocol has been developed for converting plant allyl(polyalkoxy)benzenes to methyl- and propyl(polyalkoxy)benzenes being intermediates in the syntheses of coenzyme Q0 analogues. The key stage of allyl and benzaldehyde moieties hydrogenation was carried out in a periodical autoclave mode on highly porous ceramic block Pd-catalysts. These catalysts possess large surface area, low hydraulic resistance, significant thermal and mechanical stabililty, multiple cycling and easy regeneration, which can dramatically reduce Pd consumption.
Ni-Catalyzed Iterative Alkyl Transfer from Nitrogen Enabled by the in Situ Methylation of Tertiary Amines
Nwachukwu, Chideraa Iheanyi,McFadden, Timothy Patrick,Roberts, Andrew George
, p. 9979 - 9992 (2020/09/03)
Current methods to achieve transition-metal-catalyzed alkyl carbon-nitrogen (C-N) bond cleavage require the preformation of ammonium, pyridinium, or sulfonamide derivatives from the corresponding alkyl amines. These activated substrates permit C-N bond cleavage, and their resultant intermediates can be intercepted to affect carbon-carbon bond-forming transforms. Here, we report the combination of in situ amine methylation and Ni-catalyzed benzalkyl C-N bond cleavage under reductive conditions. This method permits iterative alkyl group transfer from tertiary amines and demonstrates a deaminative strategy for the construction of Csp3-Csp3 bonds. We demonstrate PO(OMe)3 (trimethylphosphate) to be a Ni-compatible methylation reagent for the in situ conversion of trialkyl amines into tetraalkylammonium salts. Single, double, and triple benzalkyl group transfers can all be achieved from the appropriately substituted tertiary amines. Transformations developed herein proceed via recurring events: The in situ methylation of tertiary amines by PO(OMe)3, Ni-catalyzed C-N bond cleavage, and concurrent Csp3-Csp3 bond formation.
Nickel-catalyzed intelligent reductive transformation of the aldehyde group using hydrogen
Tong, Xinli,Guo, Pengfei,Liao, Shengyun,Xue, Song,Zhang, Haigang
, p. 5828 - 5840 (2019/11/11)
The selective transformation of the aldehyde group (-CHO) in multifunctional oxygenates is a key challenge in the development of sustainable biomass feedstock. Herein, a smart Ni-MFC catalyst was developed from a 2D Ni-based metal-organic framework (MOF), which efficiently promoted the transformation of -CHO in the presence of H2 to a methyl group (-CH3) via the reductive etherification and hydrogenolysis of the C-O ether bond in methanol. Moreover, the catalytic process could be controlled to directionally produce methyl ether (-CH2OR) using the reductive etherification protocol. For the catalytic reduction of vanillin, the Ni-MFC-700 catalyst guaranteed the full conversion of vanillin and 96.5% yield of the desired 2-methoxy-4-methylphenol (MMP), while the Ni-MFC-500 catalyst afforded about 82.7% yield of 4-(methoxymethyl)-2-methoxyphenol in methanol solvent. This is a novel and promising approach for the valorization of multifunctional oxygenates and biomass-derived platform compounds.
Palladium-Catalyzed Methylation of Aryl, Heteroaryl, and Vinyl Boronate Esters
Haydl, Alexander M.,Hartwig, John F.
supporting information, p. 1337 - 1341 (2019/02/26)
A method for the direct methylation of aryl, heteroaryl, and vinyl boronate esters is reported, involving the reaction of iodomethane with aryl-, heteroaryl-, and vinylboronate esters catalyzed by palladium and PtBu2Me. This transformation occurs with a remarkably broad scope and is suitable for late-stage derivatization of biologically active compounds via the boronate esters. The unique capabilities of this method are demonstrated by combining carbon-boron bond-forming reactions with palladium-catalyzed methylation in a tandem transformation.
Nickel-catalyzed methylation of aryl halides/tosylates with methyl tosylate
Wang, Jiawang,Zhao, Jianhong,Gong, Hegui
, p. 10180 - 10183 (2017/09/23)
This work describes the cross-electrophile methylation of aryl bromides and aryl tosylates with methyl tosylate. The mild reaction conditions allow effective methylation of a wide set of heteroaryl electrophiles and dimethylation of dibromoarenes.