T. Narender, K. P. Reddy / Tetrahedron Letters 48 (2007) 7628–7632
7631
DDQ catalyzed dehydrogenation of fully saturated
Acknowledgements
chromanodihydrochalcone also failed to dehydrogenate
the required saturated double bond selectively and pro-
vided chromenochalcone.
The authors are thankful to the Director and SAIF
Division of CDRI. K.P.R. thanks the CSIR, New Delhi,
for financial support.
A few natural chromanochalcones, which contain an
a,b-unsaturated double bond and a saturated chroman
ring (dihydrobenzopyran) in the same molecule, have
appeared in the literature (Fig. 1: Crotamadine and
Dorsmanin A).12,13 In continuation of our efforts to syn-
thesize chromanochalcones, we herein report the bioge-
netic type synthesis of chromanochalcones by
regioselective cyclization of prenyl group of the preny-
lated chalcones using BF3–Et2O.
Supplementary data
Spectral data of all the compounds associated with this
article are available as supplementary data. It can be
downloaded from the internet. Supplementary data
associated with this article can be found, in the online
Recently, we developed a new and simple methodology
for the synthesis of chalcones in high yields using BF3–
Et2O.14 We wanted to utilize BF3–Et2O for regioselec-
tive cyclization and anticipated that BF3–Et2O might
form a complex with the chelated hydroxyl group (C-
20) and the a,b-unsaturated carbonyl group of the
prenylated chalcone. This complexation prevents the
formation of a flavanone. The second mole of the re-
agent might provide cyclization of the prenyl group to
give the chromanochalcone (Fig. 2).
References and notes
1. (a) Kashman, Y.; Gustafson, K. R.; Fuller, R. W.;
Cardellina, J. H.; McMahon, J. B., II; Currens, M. J.;
Buckheit, R. W.; Hughes, S. H., Jr.; Cragg, G. M.; Boyd,
M. R. J. Med. Chem. 1992, 35, 2735–2743; (b) Currens, M.
J.; Mariner, J. M.; McMahon, J. B.; Boyd, M. R. J.
Pharmacol. Exp. Ther. 1996, 279, 652–661; (c) Bergmann,
R.; Gericke, R. J. Med. Chem. 1990, 33, 492–504; (d)
Gericke, R.; Harting, J.; Lues, I.; Schittenhelm, C. J. Med.
Chem. 1991, 34, 3074–3085; (e) Srivastava, R. P.; Proksch,
P. Entomol. Gen. 1991, 15, 265–274.
2. (a) Burton, G. W.; Ingold, K. U. Ann. N.Y. Acad. Sci.
1989, 570, 7–22; (b) Harada, T.; Hayashiya, T.; Wada, I.;
Iwaake, N.; Oku, A. J. Am. Chem. Soc. 1987, 109, 527–
532; (c) Inoue, S.; Ikeda, H.; Sato, S.; Horie, K.; Ota, T.;
Miyamoto, O.; Sato, K. J. Org. Chem. 1987, 52, 5495–
5497.
To investigate this possibility we carried out a cycliza-
tion reaction with the prenylated chalcone 20,40,-dihy-
droxy-4-methoxy-50-C-prenylchalcone
1a
in
the
presence of BF3–Et2O. Gratifyingly, regioselective
cyclization of the prenyl group occurred to give exclu-
sively chromanochalcone 1b, but we did not observe
formation of the corresponding flavanone (Scheme
2).15 To demonstrate the generality of the reaction we
have used several prenylated chalcones 2a–13a and syn-
thesized chromanochalcones 2b–13b in excellent yields
(Table 1).
3. (a) Seeram, N. P.; Jacobs, H.; McLean, S.; Reynolds, W.
F. Phytochemistry 1998, 49, 1389–1391; (b) Tanaka, T.;
Asai, F.; Iinuma, M. Phytochemistry 1998, 49, 229–232.
4. Matsumoto, K.; Miyake, S.; Yano, M.; Ueki, Y.; Tom-
inaga, Y. Lancet 1997, 350, 1748.
Several natural chalcones exist with long chain alkyl
groups such as geranyl, farnesyl and phytyl. We also
prepared such chalcones and succeeded to cyclize the
long chain alkyl group selectively to give chromano-
chalcones 14b and 15b without the formation of the
corresponding flavanones (Table 1). Recently, we
demonstrated the tolerability of BF3–Et2O towards acid
or base sensitive functional groups such as O-acyl and
N-acyl groups, therefore BF3–Et2O can be used as a
regioselective cyclizing agent in the presence of such
functional groups.14 In the case of acid or base catalyzed
cyclizations, these sensitive groups undergo hydrolysis
leading to deacylated compounds along with the forma-
tion of flavanone.
5. Nicolaou, K. C.; Pfefferkorn, J. A.; Roecker, A. J.; Cao,
G.-Q.; Barluenga, S.; Mitchell, H. J. J. Am. Chem. Soc.
2000, 122, 9939–9953.
6. Pushpa, B.; Rameshwar, D. Indian J. Chem. 2002, 41B,
184–186.
7. Charles, D. H.; William, A. H. J. Org. Chem. 1940, 5, 212–
222.
8. William, G. D.; Jeffrey, M. C.; Victor, B. Tetrahedron
Lett. 1990, 31, 3241–3244.
9. Bigi, F.; Carloni, S.; Maggi, R.; Muchetti, C.; Rastelli, M.;
Sartori, G. Synthesis 1998, 301–304.
10. Wang, Y.; Wu, J.; Xia, P. Synth. Commun. 2006, 36, 2685–
2698.
11. (a) Narender, T.; Shweta; Tanvir, K.; Rao, M. S.;
Srivastava, K.; Puri, S. K. Bioorg. Med. Chem. Lett. 2005,
15, 2453–2455; (b) Kumar, J. K.; Narender, T.; Rao, M.
S.; Rao, P. S.; Toth, G.; Balazs, B.; Duddeck, H. J. Braz.
Chem. Soc. 1999, 10, 278–280; (c) Narender, T.; Shweta;
Gupta, S. Bioorg. Med. Chem. Lett. 2004, 14, 3913–3916;
(d) Narender, T.; Tanvir, K.; Shweta; Nishi; Goyal, N.;
Gupta, S. Bioorg. Med. Chem. 2005, 13, 6543–6550.
12. Ngadjui, B. T.; Abegaz, B. M.; Dongo, E.; Tamboue, H.;
Fogue, K. Phytochemistry 1998, 48, 349–354.
13. Bhakuni, D. S.; Chaturvedi, R. J. Nat. Prod. 1984, 47,
585–591.
In summary, we have demonstrated the use of BF3–
Et2O as a regioselective cyclizing agent for the synthesis
of chromanochalcones from prenylated chalcones and
long chain phytylated chalcones. Our method has sev-
eral advantages over existing methods such as no side
reactions (flavanone formation), high yields, simple
workup, short reaction times and tolerates base or acid
sensitive functional groups. This methodology can be
used for the synthesis of several natural products and
their analogues.
14. Narender, T.; Reddy, K. P. Tetrahedron Lett. 2007, 48,
3177–3180.