54-42-2Relevant articles and documents
Synthesis of Phosphoramidite Monomers Equipped with Complementary Bases for Solid-Phase DNA Oligomerization
Romero-Pérez, Sonia,López-Martín, Isabel,Martos-Maldonado, Manuel C.,Somoza, álvaro,González-Rodríguez, David
supporting information, p. 41 - 45 (2020/01/03)
We describe the preparation of two monomers that bear complementary nucleobases at the edges (guanine-2′-deoxycytidine and 2-aminoadenine-2′-deoxyuridine) and that are conveniently protected and activated for solid-phase automated DNA synthesis. We report the optimized synthetic routes leading to the four nucleobase derivatives involved, their cross-coupling reactions into dinucleobase-containing monomers, and their oligomerization in the DNA synthesizer.
Thermodynamic Reaction Control of Nucleoside Phosphorolysis
Kaspar, Felix,Giessmann, Robert T.,Neubauer, Peter,Wagner, Anke,Gimpel, Matthias
supporting information, p. 867 - 876 (2020/01/24)
Nucleoside analogs represent a class of important drugs for cancer and antiviral treatments. Nucleoside phosphorylases (NPases) catalyze the phosphorolysis of nucleosides and are widely employed for the synthesis of pentose-1-phosphates and nucleoside analogs, which are difficult to access via conventional synthetic methods. However, for the vast majority of nucleosides, it has been observed that either no or incomplete conversion of the starting materials is achieved in NPase-catalyzed reactions. For some substrates, it has been shown that these reactions are reversible equilibrium reactions that adhere to the law of mass action. In this contribution, we broadly demonstrate that nucleoside phosphorolysis is a thermodynamically controlled endothermic reaction that proceeds to a reaction equilibrium dictated by the substrate-specific equilibrium constant of phosphorolysis, irrespective of the type or amount of NPase used, as shown by several examples. Furthermore, we explored the temperature-dependency of nucleoside phosphorolysis equilibrium states and provide the apparent transformed reaction enthalpy and apparent transformed reaction entropy for 24 nucleosides, confirming that these conversions are thermodynamically controlled endothermic reactions. This data allows calculation of the Gibbs free energy and, consequently, the equilibrium constant of phosphorolysis at any given reaction temperature. Overall, our investigations revealed that pyrimidine nucleosides are generally more susceptible to phosphorolysis than purine nucleosides. The data disclosed in this work allow the accurate prediction of phosphorolysis or transglycosylation yields for a range of pyrimidine and purine nucleosides and thus serve to empower further research in the field of nucleoside biocatalysis. (Figure presented.).
Site-specific incorporation of multiple units of functional nucleotides into DNA using a step-wise approach with polymerase and its application to monitoring DNA structural changes
Huy Le, Binh,Nguyen, Van Thang,Seo, Young Jun
supporting information, p. 2158 - 2161 (2019/02/20)
We have developed a new method, a step-wise approach with polymerase, for site-specific incorporation of multiple units of functional nucleotides into DNA to form hairpin secondary structures. The fluorescence of the resulting DNA incorporating the functional nucleotides varied upon transitioning from single-strand to hairpin and duplex structures.
Bio-catalytic synthesis of unnatural nucleosides possessing a large functional group such as a fluorescent molecule by purine nucleoside phosphorylase
Hatano, Akihiko,Wakana, Hiroyuki,Terado, Nanae,Kojima, Aoi,Nishioka, Chisato,Iizuka, Yu,Imaizumi, Takuya,Uehara, Sanae
, p. 5122 - 5129 (2019/10/05)
Unnatural nucleosides are attracting interest as potential diagnostic tools, medicines, and functional molecules. However, it is difficult to couple unnatural nucleobases to the 1′-position of ribose in high yield and with β-regioselectivity. Purine nucleoside phosphorylase (PNP, EC2.4.2.1) is a metabolic enzyme that catalyses the conversion of inosine to ribose-1α-phosphate and free hypoxanthine in phosphate buffer with 100% α-selectivity. We explored whether PNP can be used to synthesize unnatural nucleosides. PNP catalysed the reaction of thymidine as a ribose donor with purine to produce 2′-deoxynebularine (3, β form) in high conversion (80%). It also catalysed the phosphorolysis of thymidine and introduced a pyrimidine base with a halogen atom substituted at the 5-position into the 1′-position of ribose in moderate yield (52-73%), suggesting that it exhibits loose selectivity. For a bulky purine substrate [e.g., 6-(N,N-di-propylamino)], the yield was lower, but addition of a polar solvent such as dimethyl sulfoxide (DMSO) increased the yield to 74%. PNP also catalysed the reaction between thymidine and uracil possessing a large functional fluorescent group, 5-(coumarin-7-oxyhex-5-yn) uracil (C4U). Conversion to 2′-deoxy-[5-(coumarin-7-oxyhex-5-yn)] uridine (dRC4U) was drastically enhanced by DMSO addition. Docking simulations between dRC4U and E. coli PNP (PDB 3UT6) showed the uracil moiety in the active-site pocket of PNP with the fluorescent moiety at the entrance of the pocket. Thus, the bulky fluorescent moiety has little influence on the coupling reaction. In summary, we have developed an efficient method for producing unnatural nucleosides, including purine derivatives and modified uracil, using PNP.
5-iodo-4-thio-2′-deoxyuridine as a sensitizer of X-ray induced cancer cell killing
Makurat, Samanta,Spisz, Paulina,Kozak, Witold,Rak, Janusz,Zdrowowicz, Magdalena
, (2019/05/10)
Nucleosides, especially pyrimidines modified in the C5-position, can act as radiosensitizers via a mechanism that involves their enzymatic triphosphorylation, incorporation into DNA, and a subsequent dissociative electron attachment (DEA) process. In this paper, we report 5-iodo-4-thio-2′-deoxyuridine (ISdU) as a compound that can effectively lead to ionizing radiation (IR)-induced cellular death, which is proven by a clonogenic assay. The test revealed that the survival of cells, pre-treated with 10 or 100 μM solution of ISdU and exposed to 0.5 Gy of IR, was reduced from 78.4% (for non-treated culture) to 67.7% and to 59.8%, respectively. For a somewhat higher dose of 1 Gy, the surviving fraction was reduced from 68.2% to 54.9% and to 40.8% for incubation with 10 or 100 μM ISdU, respectively. The cytometric analysis of histone H2A.X phosphorylation showed that the radiosensitizing effect of ISdU was associated, at least in part, with the formation of double-strand breaks. Moreover, the cytotoxic test against the MCF-7 breast cancer cell line and human dermal fibroblasts (HDFa line) confirmed low cytotoxic activity of ISdU. Based on the results of steady state radiolysis of ISdU with a dose of 140 Gy and quantum chemical calculations explaining the origin of the MS detected radioproducts, the molecular mechanism of sensitization by ISdU was proposed. In conclusion, we found ISdU to be a potential radiosensitizer that could improve anticancer radiotherapy.
Direct incorporation and extension of a fluorescent nucleotide through rolling circle DNA amplification for the detection of microRNA 24-3P
Le, Binh Huy,Seo, Young Jun
supporting information, p. 2035 - 2038 (2018/05/04)
We designed and synthesized several fluorescent nucleotides from thiophene, anthracene and pyrene, which have different sizes, and screened their incorporation and extension capability during the rolling circle amplification of DNA. The thiophene-based fluorescent nucleotide (dUthioTP) could highly incorporate and extended into the rolling circle DNA product, while other fluorescent nucleotides (dUanthTP, and dUpyrTP) could not. This dUthioTP fluorescent nucleotide could be used for the detection of miRNA 24-3P, which is related PRRSV. This direct labeling system during rolling circle DNA amplification exhibited an increased fluorescence signal showing gel formation for the detection of miRNA 24-3P. This direct labeling system is a very simple and cost-efficient method for the detection miRNA 24-3P and also exhibited highly sensitive and selective detection properties.
Diverse size approach to incorporate and extend highly fluorescent unnatural nucleotides into DNA
Le, Binh Huy,Koo, Ja Choon,Joo, Han Na,Seo, Young Jun
supporting information, p. 3591 - 3596 (2017/06/13)
We have prepared a series of size-diverse unnatural nucleotides containing fluorescent (dApyrTP, dUpyrTP, dUantTP, dUthiTP) and quencher (dUazoTP) units, as well as nucleotides presenting small functional groups (dAethTP, dAoctTP, dUethTP, dUiodTP), all based on deoxyadenosine and deoxyuridine, and examined their suitability for use in enzymatic incorporation and extension into DNA. We observed a size-dependence of the incorporation and extension capability (following the order dUiodTP?=?dUethTP?=?dUthiTP?>?dUazoTP?>?dUpyrTP?>?dUantTP) during primer extension. This result was supported by circular dichroism (CD) spectra, which revealed a trend in the different B-form DNA structures depending on the size of the unit at the 5-position of the deoxyuridine (dUiodTP?>?dUethTP?>?dUthiTP?>?dUpyrTP), obtained from the PCR products. Interestingly, dUthiTP could be incorporated and extended into long DNA strands during primer extension and even PCR amplification, with CD spectroscopy confirming a stable secondary B-form duplex DNA structure. We observed full-length extension products even when combining dUthiTP with a template containing 24 continuous dA units during the primer extension. Thus, we believe that dUthiTP is a promising fluorescent nucleotide for a diverse range of biological applications requiring multiple incorporation and extension directly without disruption of B-form DNA structures.
A comparison between immobilized pyrimidine nucleoside phosphorylase from Bacillus subtilis and thymidine phosphorylase from Escherichia coli in the synthesis of 5-substituted pyrimidine 2′-deoxyribonucleosides
Serra, Immacolata,Bavaro, Teodora,Cecchini, Davide A.,Daly, Simona,Albertini, Alessandra M.,Terreni, Marco,Ubiali, Daniela
, p. 16 - 22 (2013/10/22)
Pyrimidine nucleoside phosphorylase from Bacillus subtilis (BsPyNP, E.C. 2.4.2.3) and thymidine phosphorylase from Escherichia coli (EcTP, E.C. 2.4.2.4) were used, as immobilized enzymes, in the synthesis of 5-halogenated pyrimidine 2′-deoxyribonucleosides (14-18) by transglycosylation in fully aqueous medium. From the comparative study of the two biocatalysts, no remarkable differences emerged about their substrate specificity, bioconversion yield, stability in organic cosolvents (DMF and MeCN). Moreover, both biocatalysts could be recycled for at least 5 times with no loss of the productivity. Both enzymes do not accept arabinonucleosides and 2′,3′- dideoxynucleosides as substrates, whereas they catalyze bioconversions involving 5′-deoxyribonucleosides and 5-halogenated uracils. The synthesis of compounds 14-18 proceeded at a similar conversion (33-68% for BsPyNP and 25-62% for EcTP, respectively). Immobilization was found to exert, for both the biocatalysts, a dramatic enhancement of stability upon incubation in MeCN. Optimization of 5-fluoro-2′-deoxyuridine (14) synthesis (pH 7.5, 10 mM phosphate buffer, nucleoside/nucleobase 3:1 molar ratio) and subsequent scale-up afforded the target compound in 73% (EcTP) or 76% (BsPyNP) conversion (about 9 g/L).
Synthesis of novel nucleoside 5′-triphosphates and phosphoramidites containing alkyne or amino groups for the postsynthetic functionalization of nucleic acids
Vasilyeva, Svetlana V.,Budilkin, Boris I.,Konevetz, Dmitrii A.,Silnikov, Vladimir N.
body text, p. 753 - 767 (2012/07/28)
A series of novel nucleoside 5′-triphosphates and phosphoramidites containing alkyne or amino groups for the postsynthetic functionalization of nucleic acids were designed and synthesized. For this purpose, the new 3-aminopropoxypropynyl linker group was used. It contains two alternative functional capabilities: an amino group for the reaction of amino-alkynyl- modified oligonucleotides with corresponding activated esters and an alkyne group for the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. It was shown that a variety of methods of the attachment of the new linker can be used to synthesize a diversity of modified pyrimidine nucleosides. Copyright Taylor and Francis Group, LLC.
Ionic liquid mediated synthesis of 5-halouracil nucleosides: Key precursors for potential antiviral drugs
Kumar, Vineet,Malhotra, Sanjay V.
experimental part, p. 821 - 834 (2010/08/20)
Synthesis of antiviral 5-halouracil nucleosides, also used as key precursors for the synthesis of other potential antiviral drugs, has been demonstrated using ionic liquids as convenient and efficient reaction medium.