609-72-3Relevant articles and documents
Additive-free selective methylation of secondary amines with formic acid over a Pd/In2O3 catalyst
Benaissa, Idir,Cantat, Thibault,Genre, Caroline,Godou, Timothé,Pinault, Mathieu
, p. 57 - 61 (2022/01/19)
Formic acid is used as the sole carbon and hydrogen source in the methylation of aromatic and aliphatic amines to methylamines. The reaction proceeds via a formylation/transfer hydrogenation pathway over a solid Pd/In2O3 catalyst without the need for any additive.
Trialkylammonium salt degradation: Implications for methylation and cross-coupling
Assante, Michele,Baillie, Sharon E.,Juba, Vanessa,Leach, Andrew G.,McKinney, David,Reid, Marc,Washington, Jack B.,Yan, Chunhui
, p. 6949 - 6963 (2021/06/02)
Trialkylammonium (most notably N,N,N-trimethylanilinium) salts are known to display dual reactivity through both the aryl group and the N-methyl groups. These salts have thus been widely applied in cross-coupling, aryl etherification, fluorine radiolabelling, phase-transfer catalysis, supramolecular recognition, polymer design, and (more recently) methylation. However, their application as electrophilic methylating reagents remains somewhat underexplored, and an understanding of their arylation versus methylation reactivities is lacking. This study presents a mechanistic degradation analysis of N,N,N-trimethylanilinium salts and highlights the implications for synthetic applications of this important class of salts. Kinetic degradation studies, in both solid and solution phases, have delivered insights into the physical and chemical parameters affecting anilinium salt stability. 1H NMR kinetic analysis of salt degradation has evidenced thermal degradation to methyl iodide and the parent aniline, consistent with a closed-shell SN2-centred degradative pathway, and methyl iodide being the key reactive species in applied methylation procedures. Furthermore, the effect of halide and non-nucleophilic counterions on salt degradation has been investigated, along with deuterium isotope and solvent effects. New mechanistic insights have enabled the investigation of the use of trimethylanilinium salts in O-methylation and in improved cross-coupling strategies. Finally, detailed computational studies have helped highlight limitations in the current state-of-the-art of solvation modelling of reaction in which the bulk medium undergoes experimentally observable changes over the reaction timecourse. This journal is
Nickel-Catalyzed Amination of Aryl Chlorides with Amides
Li, Jinpeng,Huang, Changyu,Wen, Daheng,Zheng, Qingshu,Tu, Bo,Tu, Tao
supporting information, p. 687 - 691 (2021/01/09)
A nickel-catalyzed amination of aryl chlorides with diverse amides via C-N bond cleavage has been realized under mild conditions. A broad substrate scope with excellent functional group tolerance at a low catalyst loading makes the protocol powerful for synthesizing various aromatic amines. The aryl chlorides could selectively couple to the amino fragments rather than the carbonyl moieties of amides. Our protocol complements the conventional amination of aryl chlorides and expands the usage of inactive amides.
Utilization of renewable formic acid from lignocellulosic biomass for the selective hydrogenation and/or N-methylation
Zhou, Chao-Zheng,Zhao, Yu-Rou,Tan, Fang-Fang,Guo, Yan-Jun,Li, Yang
, p. 4724 - 4728 (2021/09/06)
Lignocellulosic biomass is one of the most abundant renewable sources in nature. Herein, we have developed the utilization of renewable formic acid from lignocellulosic biomass as a hydrogen source and a carbon source for the selective hydrogenation and further N-methylation of various quinolines and the derivatives, various indoles under mild conditions in high efficiencies. N-methylation of various anilines is also developed. Mechanistic studies indicate that the hydrogenation occurs via a transfer hydrogenation pathway.
Mesoionic N-heterocyclic olefin catalysed reductive functionalization of CO2for consecutiveN-methylation of amines
Das, Arpan,Maji, Subir,Mandal, Swadhin K.
, p. 12174 - 12180 (2021/09/28)
A mesoionic N-heterocyclic olefin (mNHO) was introduced as a metal-free catalyst for the reductive functionalization of CO2leading to consecutive doubleN-methylation of primary amines in the presence of 9-borabicyclo[3.3.1]nonane (9-BBN). A wide range of secondary amines and primary amines were successfully methylated under mild conditions. The catalyst sustained over six successive cycles ofN-methylation of secondary amines without compromising its activity, which encouraged us to check its efficacy towards doubleN-methylation of primary amines. Moreover, this method was utilized for the synthesis of two commercially available drug molecules. A detailed mechanistic cycle was proposed by performing a series of control reactions along with the successful characterisation of active catalytic intermediates either by single-crystal X-ray study or by NMR spectroscopic studies in association with DFT calculations.
Alcohol promoted N -methylation of anilines with CO2/H2over a cobalt catalyst under mild conditions
Han, Buxing,Ke, Zhengang,Li, Ruipeng,Liu, Zhimin,Tang, Minhao,Wang, Huan,Zeng, Wei,Zhao, Yanfei
, p. 9147 - 9153 (2021/11/30)
N-Methylation of amines with CO2/H2 to N-methylamines over non-noble metal catalysts is very interesting but remains challenging. Herein, we present an alcohol (e.g., ethanol) promoted strategy for the N-methylation of anilines with CO2/H2 with high efficiency under mild conditions (e.g., 125 °C), which is achieved over a cobalt catalytic system composed of Co(OAc)2·4H2O, triphos and Sn(OTf)2. This catalytic system has a broad substrate scope and is tolerant toward a wide range of anilines and N-methyl anilines, and a series of N,N-dimethyl anilines were obtained in high yields. Mechanism investigation indicates that the alcohol solvent shifts the equilibrium of CO2 hydrogenation by forming an alkyl formate, which further reacts with the amine to produce N-formamide, and Sn(OTf)2 promotes the deoxygenative hydrogenation of N-formamides to afford N-methylamines. This is the first example of the N-methylation of amines with CO2/H2 over a cobalt catalytic system, which shows comparable performance to the reported Ru catalysts and may have promising applications.
Preparation method of N-alkylated derivative of primary amine compound
-
Paragraph 0021; 0039, (2021/07/09)
The invention relates to a preparation method of an N-alkylated derivative of a primary amine compound. The method comprises the following steps: uniformly mixing a primary amine compound, an alcohol compound and a catalyst in a reactor, and heating to react for a period of time to generate an N-alkylated substituted tertiary amine compound; wherein the catalyst is a copper-cobalt bimetallic catalyst, and the carrier of the catalyst is Al2O3. According to the method, alcohol is adopted as an alkylating reagent and is low in price and easy to obtain, a byproduct is water, no pollution is caused to the environment, and the overall reaction atom economy is high; the catalyst is simple in preparation method, low in cost, high in reaction activity and good in structural stability; meanwhile, by using the copper-cobalt bimetallic catalyst, the use of strong base additives can be avoided, and the requirement on reaction equipment is low; and the reaction post-treatment is convenient, and the catalyst can be recycled and is environment-friendly.
Photochemical Reaction of N,N-Dimethylanilines with N-Substituted Maleimides Utilizing Benzaldehyde as the Photoinitiator
Nikitas, Nikolaos F.,Theodoropoulou, Maria A.,Kokotos, Christoforos G.
supporting information, p. 1168 - 1173 (2021/02/01)
Photoorganocatalysis constitutes a powerful domain of photochemistry and organic synthesis. The scaffold of pyrrolo[3,4-c]quinolinoles exhibits interesting and potent inhibition against various enzymes, making them really promising pharmaceutical targets. Herein, we describe a photochemical methodology for the reaction of N,N-dimethylanilines with N-substituted maleimides, utilizing benzaldehyde as the photoinitiator. A variety of substituted N,N-dimethylanilines and N-substituted maleimides were converted into the corresponding adducts in moderate to high yields.
Dirhodium-Catalyzed Chemo-and Site-Selective C-H Amidation of N, N-Dialkylanilines
Chen, Gong,Arai, Kenta,Morisaki, Kazuhiro,Kawabata, Takeo,Ueda, Yoshihiro
supporting information, p. 728 - 732 (2021/01/18)
A method for dirhodium-catalyzed C(sp 3)-H amidation of N, N-dimethylanilines was developed. Chemoselective C(sp 3)-H amidation of N-methyl group proceeded exclusively in the presence of C(sp 2)-H bonds of the electron-rich aromatic ring. Site-selective C(sp 3)-H amidation proceeded exclusively at the N-methyl group of N-methyl-N-Alkylaniline derivatives with secondary, tertiary, and benzylic C(sp 3)-H bonds α to a nitrogen atom.
Method for realizing N-alkylation by using alcohols as carbon source under photocatalysis
-
Paragraph 0048-0057, (2021/03/13)
The invention discloses a method for realizing N-alkylation by using alcohols as a carbon source under photocatalysis, and belongs to the technical field of catalytic synthesis. Alcohol, a substrate raw material and a catalyst are placed in a reaction device, ultraviolet and/or visible light irradiation is carried out in an inert atmosphere, after the irradiation is finished, solid-liquid separation is carried out to remove the catalyst, and an N-alkylation product can be obtained through extraction, distillation and purification, wherein the substrate raw material comprises any one of an amine compound, an aromatic nitro compound or an aromatic nitrile compound, the alcohol comprises any one or more of soluble primary alcohols, and the catalyst is metal oxide/titanium dioxide or metal sulfide/titanium dioxide. The method is simple and easy to operate, can be used for efficient photocatalysis one-pot multi-step hydrogenation N-alkylation reaction, and is mild in reaction condition, high in chemical selectivity of N-alkylamine, good in catalyst stability and easy to recycle.