6971-51-3Relevant articles and documents
Phosphoric acid-modified commercial kieselguhr supported palladium nanoparticles as efficient catalysts for low-temperature hydrodeoxygenation of lignin derivatives in water
Cui, Yuntong,Liu, Zhaohui,Ran, Jiansu,Wang, Jianjian,Yangcheng, Ruixue
, p. 1570 - 1577 (2022/03/14)
Efficient production of high value-added chemicals and biofuels via low-temperature chemoselective HDO of lignin derivatives in water is still a challenge. Here, we construct a low-cost, active and stable Pd/PCE catalyst using phosphoric acid-modified commercial Celite (PCE) as the support, and this catalyst exhibits excellent activity in low-temperature HDO of vanillin as well as other lignin derivatives in water. The superior catalytic performance is due to the presence of P species on the surface of Pd/PCE, accelerating the selective conversion of the intermediate into the final product. Detailed experimental and mechanistic studies reveal that the rapid conversion of the intermediate to the final product proceeds via a free-radical process in an interfacial microenvironment created by intimate interacting between the P species and Pd NPs. The insights of this work provide a new low-cost catalytic system for efficient production of valuable chemicals and future biofuels from lignin derivatives. This journal is
Sodium Aminodiboranate, a New Reagent for Chemoselective Reduction of Aldehydes and Ketones to Alcohols
Wang, Jin,Guo, Yu,Li, Shouhu,Chen, Xuenian
supporting information, p. 1104 - 1108 (2021/05/25)
Sodium aminodiboranate (NaNH 2(BH 3) 2, NaADBH) is a new member of the old borane family, which exhibits superior performance in chemoselective reduction. Experimental results show that NaADBH can rapidly reduce aldehydes and ketones to the corresponding alcohols in high efficiency and selectivity under mild conditions. There are little steric and electronic effects on this reduction.
Disproportionation of aliphatic and aromatic aldehydes through Cannizzaro, Tishchenko, and Meerwein–Ponndorf–Verley reactions
Sharifi, Sina,Sharifi, Hannah,Koza, Darrell,Aminkhani, Ali
, p. 803 - 808 (2021/07/20)
Disproportionation of aldehydes through Cannizzaro, Tishchenko, and Meerwein–Ponndorf–Verley reactions often requires the application of high temperatures, equimolar or excess quantities of strong bases, and is mostly limited to the aldehydes with no CH2 or CH3 adjacent to the carbonyl group. Herein, we developed an efficient, mild, and multifunctional catalytic system consisting AlCl3/Et3N in CH2Cl2, that can selectively convert a wide range of not only aliphatic, but also aromatic aldehydes to the corresponding alcohols, acids, and dimerized esters at room temperature, and in high yields, without formation of the side products that are generally observed. We have also shown that higher AlCl3 content favors the reaction towards Cannizzaro reaction, yet lower content favors Tishchenko reaction. Moreover, the presence of hydride donor alcohols in the reaction mixture completely directs the reaction towards the Meerwein–Ponndorf–Verley reaction. Graphic abstract: [Figure not available: see fulltext.].
Efficient Solvent-Free Hydrosilylation of Aldehydes and Ketones Catalyzed by Fe2(CO)9/C6H4-o-(NCH2PPh2)2BH
Fang, Fei,Chang, Jiarui,Zhang, Jie,Chen, Xuenian
, p. 3509 - 3515 (2021/03/16)
An efficient solvent-free catalyst system for hydrosilylation of aldehydes and ketones was developed based on iron pre-catalyst Fe2(CO)9/C6H4-o-(NCH2PPh2)2BH. The reactions were tolerant of many functional groups and the corresponding alcohols were isolated in good to excellent yields following basic hydrolysis of the reaction products. The reaction is likely catalyzed by an in situ generated pincer ligated iron hydride complex. Graphic Abstract: [Figure not available: see fulltext.]
CeO2-nanocubes as efficient and selective catalysts for the hydroboration of carbonyl groups
Bhawar, Ramesh,Bose, Shubhankar Kumar,Patil, Kiran S.
supporting information, p. 15028 - 15034 (2021/09/04)
The CeO2-nanoparticle catalysed hydroboration of carbonyl compounds with HBpin (pin = OCMe2CMe2O) is reported to afford the corresponding borate esters in excellent yield. A series of aromatic and aliphatic aldehydes and ketones having synthetically important functional groups were well-Tolerated under mild reaction conditions. Further, chemoselective hydroboration of aldehydes over other reducible functional groups such as ketone, nitrile, hydroxide, alkene, alkyne, amide, ester, nitro, and halides was achieved. Importantly the catalyst can be recycled up to ten runs with slight loss in activity. This journal is
Iron-catalyzed chemoselective hydride transfer reactions
Coufourier, Sébastien,Ndiaye, Daouda,Gaillard, Quentin Gaignard,Bettoni, Léo,Joly, Nicolas,Mbaye, Mbaye Diagne,Poater, Albert,Gaillard, Sylvain,Renaud, Jean-Luc
supporting information, (2021/06/07)
A Diaminocyclopentadienone iron tricarbonyl complex has been applied in chemoselective hydrogen transfer reductions. This bifunctional iron complex demonstrated a broad applicability in mild conditions in various reactions, such as reduction of aldehydes over ketones, reductive alkylation of various functionalized amines with functionalized aldehydes and reduction of α,β-unsaturated ketones into the corresponding saturated ketones. A broad range of functionalized substrates has been isolated in excellent yields with this practical procedure.
KB3H8: An environment-friendly reagent for the selective reduction of aldehydes and ketones to alcohols
Li, Xinying,Mi, Tongge,Guo, Wenjing,Ruan, Zhongrui,Guo, Yu,Ma, Yan-Na,Chen, Xuenian
supporting information, p. 12776 - 12779 (2021/12/10)
Selective reduction of aldehydes and ketones to their corresponding alcohols with KB3H8, an air- and moisture-stable, nontoxic, and easy-to-handle reagent, in water and THF has been explored under an air atmosphere for the first time. Control experiments illustrated the good selectivity of KB3H8 over NaBH4 for the reduction of 4-acetylbenzaldehyde and aromatic keto esters. This journal is
Ruthenium(II) Complex of a Tridentate Azoaromatic Pincer Ligand and its Use in Catalytic Transfer Hydrogenation of Aldehydes and Ketones with Isopropanol
Saha, Tanushri,Prasad Rath, Santi,Goswami, Sreebrata
, p. 1455 - 1461 (2021/05/18)
In this work, a new Ru(II) complex with the redox-active pincer 2,6-bis(phenylazo)pyridine ligand (L) is reported which acts as a metal-ligand bifunctional catalyst for transfer hydrogenation reactions. The isolated complex [(L)Ru(PMe2Ph)2(CH3CN)](ClO4)2; [1](ClO4)2 is characterized by a host of spectroscopic measurements and X-ray structure determination. It is diamagnetic and single-crystal X-ray structure analysis reveals that [1]2+ adopts a distorted octahedral geometry where L binds Ru center in meridional fashion. The observed elongation in the coordinated azo bond length (1.29 ?) is attributed to the extensive π-back bonding, dπ(RuII)→π*(azo)L. The complex [1](ClO4)2 acts as an efficient catalyst, which brings about catalytic transfer hydrogenation reactions of a broad array of aldehydes and ketones in isopropanol and in inert conditions. The selectivity of the catalyst for aldehyde reduction over the other reducible functional groups such as nitro, nitrile, ester etc was also investigated. Mechanistic studies, examined by suitable control reactions and isotope labelling experiments, indicate synergistic participation of both ligand and metal centres via the formation of a fleeting Ru?H intermediate and hydrogen walking to the coordinated azo function of L.
NaI-mediated oxidative amidation of benzyl alcohols/aromatic aldehydes to benzamides via electrochemical reaction
Rerkrachaneekorn, Tanawat,Tankam, Theeranon,Sukwattanasinitt, Mongkol,Wacharasindhu, Sumrit
supporting information, (2021/04/15)
In this research, we have developed a mild electrochemical process for oxidative amidation of benzyl alcohols/aromatic aldehydes with cyclic amines into the corresponding benzamides. This electroorganic synthetic method proceeds using NaI as a redox mediator under ambient temperature in undivided cell, providing more than 25 examples of amide products in moderate to good yields. The benefits of this reaction include one-pot synthesis, open air condition, proceed in aqueous media and no requirement of external conducting salt, base and oxidant.
Scope and limitations of biocatalytic carbonyl reduction with white-rot fungi
Zhuk, Tatyana S.,Skorobohatko, Oleksandra S.,Albuquerque, Wendell,Zorn, Holger
supporting information, (2021/02/02)
The reductive activity of various basidiomycetous fungi towards carbonyl compounds was screened on an analytical level. Some strains displayed high reductive activities toward aromatic carbonyls and aliphatic ketones. Utilizing growing whole-cell cultures of Dichomitus albidofuscus, the reactions were up-scaled to a preparative level in an aqueous system. The reactions showed excellent selectivities and gave the respective alcohols in high yields. Carboxylic acids were also reduced to aldehydes and alcohols under the same conditions. In particular, benzoic, vanillic, ferulic, and p-coumaric acid were reduced to benzyl alcohol, vanillin, dihydroconiferyl alcohol and 1-hydroxy-3-(4-hydroxyphenyl)propan, respectively.