91-16-7Relevant articles and documents
Fabricating Bifunctional Co?Al2O3@USY Catalyst via In-Situ Growth Method for Mild Hydrodeoxygenation of Lignin to Naphthenes
Cheng, Shuai,Diao, Xinyong,Ji, Na,Jia, Zhichao,Li, Hanyang,Ri, Poknam,Wang, Shurong
, (2022/05/07)
To enhance the catalytic activity and stability of metal catalysts in the hydrodeoxygenation of lignin derivatives into naphthenes, a bifunctional Co?Al2O3@USY catalyst was fabricated by the reduction of CoAl layered double hydroxide in-situ grown on the USY zeolite. In the hydrodeoxygenation of guaiacol, a 100.0 % conversion with cyclohexane yield up to 93.6 % was achieved at 180 °C, 3 MPa for 4 h, which should be the hitherto lowest reaction temperature that has been reported over Co-based metal catalysts. This catalyst was also relatively stable with 5 runs and exhibited excellent catalytic performance in the hydrodeoxygenation of other lignin model compounds and even real lignin feedstock into naphthenes. The high-efficiency of Co?Al2O3@USY was attributed to the synergistic effect between well-dispersed small Co nanoparticles and abundant acidic sites on the USY surface, while the outstanding stability was attributed to the anchoring effect of Al2O3 matrix to Co nanoparticles which avoided the leaching of Co species and particle agglomeration. This work provides a potential strategy for the design of an efficient and stable catalyst for lignin utilization.
Role of Catalyst Support's Physicochemical Properties on Catalytic Transfer Hydrogenation over Palladium Catalysts
Batalha, Nuno,Fraga, Gabriel,Hasan, M. D.,Konarova, Muxina,Laycock, Bronwyn,Pratt, Steven,Santos, Mirella S.
, p. 5191 - 5202 (2021/10/29)
Catalytic transfer hydrogenation (CTH) is a promising reaction for valorisation of bio-based feedstocks via hydrogenation without needing to use H2. Unlike standard hydrogenation, CTH occurs via dehydrogenation (DHD) of a hydrogen donor (H-donor) and hydrogenation (HYD) of a substrate. Therefore, the “ideal” CTH catalyst must balance the catalysis of both reactions to maximize the hydrogen transfer between H-donor and substrate with minimal H2 loss to gas (high atom efficiency). Additionally, the H-donor must be highly stable to prevent secondary reactions with the substrate. Herein we study the impact of the catalyst's properties on CTH of guaiacol using bicyclohexyl, a liquid organic hydrogen carrier, as a H-donor. The reaction was promoted by palladium dispersed on three typical support materials (γ-Al2O3, MgO, and SiO2). The performance of these catalysts in the conversion of bicyclohexyl and guaiacol was evaluated, allowing to estimate the H-transfer efficiency, as well as the potential for recycling the spent H-donor (bicyclohexyl). The apparent activation energies for DHD of bicyclohexyl and HYD of guaiacol revealed that slow DHD combined with fast HYD, as is the case with Pd/MgO, favours hydrogen transfer efficiency and selectivity towards hydrogenated products. In addition, an investigation of the DHD of bicyclohexyl and HYD of guaiacol independently showed that the affinity between the organic molecules and the support significantly impacts CTH. Indeed, Pd/SiO2 was highly active for both reactions individually and almost inactive for CTH. Consequently, these findings highlight the importance of the interaction between solvent-substrate-support in designing catalysts for transfer hydrogenation.
Hollow, mesoporous, eutectic Zn1?xMgxO nano-spheres as solid acid-base catalysts for the highly regio-selectiveO-methylation of 1,2-diphenols
Liu, Jie,Ma, Xuebing,Wang, Xuri,Xie, Guangxin,Yin, Zuyong,Zhang, Jianing
, p. 7454 - 7466 (2021/11/23)
The highly regio-selectiveO-methylation of catechol with dimethyl carbonate (DMC), catalyzed by a solid acid-base catalyst, is an environmentally friendly chemical process for industrial production of guaiacol. However, a guaiacol yield below 84% and high reaction temperature above 280 °C limit its industrial application. Here, hollow, mesoporous Zn1?xMgxO nano-spheres with a eutectic structure, denoted as Zn1?xMgxO HMNSs (x= 0.012-0.089), are facilely fabricatedviathe calcination of Mg2+/Zn2+ion-adsorbing carbon spheres at 500 °C in air. In theO-methylation of catechol with DMC at 180 °C, Zn1?xMgxO HMNSs (x= 0.052) afford guaiacol in 95.5% yield with a complete catechol conversion. Furthermore, 89.0-95.3% mono-ether yields with high 1,2-diphenol conversions (94.5-100%) are also obtained for the other 1,2-diphenols bearing -CH3and -Br groups. Moreover, a plausible mechanism for highly selectiveO-methylation of catechol with DMC is proposed, in which the single-site activation and double-site activation of phenolic hydroxyls by the basic oxygen of Mg-O afford guaiacol and veratrole, respectively.
Dimethoxybenzene and preparation method thereof
-
Paragraph 0043-0065, (2021/05/29)
The invention relates to the field of etherification of organic compounds, and discloses dimethoxybenzene and a preparation method thereof. The method comprises the following steps that 1, in the presence of a catalyst, catechol serves as a raw material, dimethyl carbonate serves as a methylation reagent, a methylation reaction is conducted, and imethoxybenzene is obtained, wherein the catalyst is 1, 8-diazabicyclo [5.4. 0] undec-7-ene; and 2) the reaction product obtained in the step 1) is distilled to recover the dimethyl carbonate, and then reduced pressure distillation is performed to obtain the dimethoxybenzene. According to the method, the green and environment-friendly methylation reagent dimethyl carbonate is adopted, no waste water or solid is generated, the yield is high, and the method is very suitable for industrial production and meets the green and environment-friendly process requirements.
Methylation with Dimethyl Carbonate/Dimethyl Sulfide Mixtures: An Integrated Process without Addition of Acid/Base and Formation of Residual Salts
Chan, Bun,Lui, Matthew Y.,Lui, Yuen Wai
, (2022/01/08)
Dimethyl sulfide, a major byproduct of the Kraft pulping process, was used as an inexpensive and sustainable catalyst/co-reagent (methyl donor) for various methylations with dimethyl carbonate (as both reagent and solvent), which afforded excellent yields of O-methylated phenols and benzoic acids, and mono-C-methylated arylacetonitriles. Furthermore, these products could be isolated using a remarkably straightforward workup and purification procedure, realized by dimethyl sulfide‘s neutral and distillable nature and the absence of residual salts. The likely mechanisms of these methylations were elucidated using experimental and theoretical methods, which revealed that the key step involves the generation of a highly reactive trimethylsulfonium methylcarbonate intermediate. The phenol methylation process represents a rare example of a Williamson-type reaction that occurs without the addition of a Br?nsted base.
Catalytic SNAr Hydroxylation and Alkoxylation of Aryl Fluorides
Kang, Qi-Kai,Li, Ke,Li, Yuntong,Lin, Yunzhi,Shi, Hang,Xu, Lun
supporting information, p. 20391 - 20399 (2021/08/13)
Nucleophilic aromatic substitution (SNAr) is a powerful strategy for incorporating a heteroatom into an aromatic ring by displacement of a leaving group with a nucleophile, but this method is limited to electron-deficient arenes. We have now established a reliable method for accessing phenols and phenyl alkyl ethers via catalytic SNAr reactions. The method is applicable to a broad array of electron-rich and neutral aryl fluorides, which are inert under classical SNAr conditions. Although the mechanism of SNAr reactions involving metal arene complexes is hypothesized to involve a stepwise pathway (addition followed by elimination), experimental data that support this hypothesis is still under exploration. Mechanistic studies and DFT calculations suggest either a stepwise or stepwise-like energy profile. Notably, we isolated a rhodium η5-cyclohexadienyl complex intermediate with an sp3-hybridized carbon bearing both a nucleophile and a leaving group.
Metal-Free Photoredox-Catalyzed Hydrodefluorination of Fluoroarenes Utilizing Amide Solvent as Reductant
Toriumi, Naoyuki,Yamashita, Kazuya,Iwasawa, Nobuharu
supporting information, p. 12635 - 12641 (2021/08/03)
A metal-free photoredox-catalyzed hydrodefluorination of fluoroarenes was achieved by using N,N,N’,N’-tetramethyl-para-phenylenediamine (1) as a strong photoreduction catalyst. This reaction was applicable not only to electron-rich monofluoroarenes but also to polyfluoroarenes to afford non-fluorinated arenes. The experimental mechanistic studies indicated that the amide solvent NMP plays an important role for regeneration of the photocatalyst, enabling additive-free photoreduction catalysis.
Nickel-Catalyzed Photodehalogenation of Aryl Bromides
Higginson, Bradley,Sanjosé-Orduna, Jesus,Gu, Yiting,Martin, Ruben
supporting information, p. 1633 - 1636 (2021/04/23)
Herein, we describe a Ni-catalyzed photodehalogenation of aryl bromides under visible-light irradiation that utilizes tetrahydrofuran as hydrogen source. The protocol obviates the need for exogeneous amine reductants or photocatalysts and is characterized by its simplicity and broad scope, including challenging substrate combinations.
Ceramic boron carbonitrides for unlocking organic halides with visible light
Yuan, Tao,Zheng, Meifang,Antonietti, Markus,Wang, Xinchen
, p. 6323 - 6332 (2021/05/19)
Photochemistry provides a sustainable pathway for organic transformations by inducing radical intermediates from substrates through electron transfer process. However, progress is limited by heterogeneous photocatalysts that are required to be efficient, stable, and inexpensive for long-term operation with easy recyclability and product separation. Here, we report that boron carbonitride (BCN) ceramics are such a system and can reduce organic halides, including (het)aryl and alkyl halides, with visible light irradiation. Cross-coupling of halides to afford new C-H, C-C, and C-S bonds can proceed at ambient reaction conditions. Hydrogen, (het)aryl, and sulfonyl groups were introduced into the arenes and heteroarenes at the designed positions by means of mesolytic C-X (carbon-halogen) bond cleavage in the absence of any metal-based catalysts or ligands. BCN can be used not only for half reactions, like reduction reactions with a sacrificial agent, but also redox reactions through oxidative and reductive interfacial electron transfer. The BCN photocatalyst shows tolerance to different substituents and conserved activity after five recycles. The apparent metal-free system opens new opportunities for a wide range of organic catalysts using light energy and sustainable materials, which are metal-free, inexpensive and stable. This journal is
Cleavage of CC and Co bonds in β-O-4 linkage of lignin model compound by cyclopentadienone group 8 and 9 metal complexes
Kishino, Masamichi,Kusumoto, Shuhei,Nozaki, Kyoko
supporting information, p. 477 - 480 (2020/05/19)
Degradation of 1-(3,4-dimethoxyphenyl)-2-(2-methoxyphe-noxy)propane-1,3-diol (1), a model compound for lignin β-O-4 linkage was examined with iron, ruthenium, rhodium and iridium complexes bearing cyclopentadienone ligand. Cyclopentadienone iron complex gave only a small amount of degraded product with reduced molecular weight. Cyclopentadienone ruthenium complex, so called Shvo's catalyst, afforded 3,4-dimethoxybenzaldehyde (a3) in 14.3% yield after CαCβ bond cleavage. On the other hand, cyclopentadienone group-9 metal complexes catalyzed CβO bond cleavage to afford guaiacol (b1) as a main product in up to 74.9% yield.