Page 5 of 6
Green Chemistry
Please do not adjust margins
Journal Name
Communication
not only boost the selective absorption of alkyne on the surface
of catalyst, but also activate Csp-H bond of terminal alkyne.[10, 13]
Finally, the desired product was generated via reductive
elimination and simultaneously completed the entire catalytic
circle.
3
4
C. H. Senanayake, Org. Lett., 2014, 16, D1O19I:61;0(.1b0)3K9/.CK9aGnCe0m41o3t7oK,
S. Yoshida, T. Hosoya, Org. Lett., 2019, 21, 3172; (c) W. Wang,
X. Peng, F. Wei, C.-H. Tung, Z. Xu, Angew. Chem. Int. Ed., 2016,
55, 649.
(a) R. Frei, J. Waser, J. Am. Chem. Soc. 2013, 135, 9620; (b) R.
Frei, M. D. Wodrich, D. P. Hari, P.-A. Borin, C. Chauvier, J.
Waser, J. Am. Chem. Soc., 2014, 136, 16563.
Conclusions
5
6
B. Waldecker, F. Kraft, C. Golz, M. Alcarazo, Angew. Chem., Int.
Ed., 2018, 57, 12538.
In conclusion, a stable heterogeneous Ni2P nanoparticles
on N,P-codoped carbon was developed for the synthesis of
alkynyl thioethers via the cross-dehydrogenative coupling of
alkynes and thiols under base- and ligand-free conditions. A
broad range of alkynes and thiols could be efficiently coupled
into their corresponding alkynyl thioethers in good to high
yields with good tolerance of various functional groups. The
catalyst can be readily recovered for successive recycle. N-
dopants in the catalyst was identified to play a key role for the
success of the reaction. To the best of our knowledge, this is the
(a) J. Santandrea, C. Minozzi, C. Cruche, S. K. Collins, Angew.
Chem., Int. Ed., 2017, 56, 12255; (b) E. rachet, J.-D. Brion, M.
Alami, S. Messaoudi, Adv. Synth. Catal. 2013, 355, 2627.
(a) J. Pena, G. Talavera, B. Waldecker, M. Alcarazo, Chem. - Eur.
J., 2017, 23, 75; (b) W.-C. Gao, Y.-Z. Shang, H.-H. Chang, X. Li,
W.-L. Wei; X.-Z. Yu; R. Zhou, Org. Lett., 2019, 21, 6021.
(a) C. J. Li, Z. Li, Pure Appl. Chem., 2006, 78, 935; (b) W. J. Yoo,
C. J. Li, Cross-Dehydrogenative Coupling Reactions of sp3-
Hybridized C-H Bonds, C-H Activation. Springer, Berlin,
Heidelberg, 2009: 281; (c) C. J. Li, Acc. Chem. Res., 2009, 42,
335; (d) C. Liu, H. Zhang, W. Shi, A. W. Lei, Chem. Rev., 2011,
111, 1780; (e) A. N. Campbell and S. S. Stahl, Acc.
Chem.Res.,2012, 45, 851; (f) C. I. Herrerias, X. Yao, Z. Li, C. J. Li,
Chem. Rev.,2007, 107, 2546.
7
8
first case to access alkynyl thioethers catalyzed by
a
heterogeneous stable Ni-based catalyst, and also represents
one of the most straightforward and efficient method for
synthesis of alkynyl thioethers in
environmentally friendly manner.
a cost-effective and
9
(a) M. Arisawa, K. Fujimoto, S. Morinaka, M. Yamaguchi, J. Am.
Chem. Soc., 2005, 127, 12226; (b) Z. Fang, W. He, M. Cai, Y. Lin,
H. Zhao, Tetrahedron Lett., 2015, 56, 6463; (c) Y. Yang, W.
Dong, Y. Guo, R. M. Rioux, Green Chem., 2013, 15, 3170; (d) L.
W. Bieber, M. F. da Silva, P. H. Menezes, Tetrahedron Lett.,
2004, 45, 2735.
Conflicts of interest
There are no conflicts to declare.
Acknowledgements
10 (a) Z. Ma, T. Song, Y. Yuan, Y. Yang, Chem. Sci., 2019, 10, 10283.
(b) Y. Duan, X. Dong, T. Song, Z. Wang, J. Xiao, Y. Yuan, Y. Yang,
ChemSusChem, 2019, 12, 4636; (c) T. Song, P. Ren, Y. Duan, Z.
Wang, X. Chen, Y. Yang, Green Chem., 2018, 20, 4629-4637; (d)
Y, Duan, T. Song, X. Dong; Y. Yang, Green Chem., 2018, 20, 2821
-2828; (e) X. Dong, Z. Wang, Y. Duan, Y. Yang, Chem. Commun.,
2018, 54, 8913; (f) Y. Duan, G. Ji, S. Zhang, X. Chen, Y. Yang,
Catal. Sci. Technol., 2018, 8, 1039; (g) G. Ji, Y. Duan, S. Zhang,
B. Fei, X. Chen, Y. Yang, ChemSusChem, 2017, 10, 3427.
11 (a) L.-A. Stern, L. Feng, F. Song, X. Hu, Energy Environ. Sci.,
2015,
The authors would like to acknowledge the financial support
from the Key Technology R&D Program of Shandong Province
(2019GGX102075), Open Projects of State Key Laboratory of
Physical Chemistry of the Solid Surface (Xiamen University) (No.
201808), and the 13th-Five Key Project of the Chinese Academy
of Sciences (Grant No. Y7720519KL). Y.Y also thanks the support
from the Royal Society (UK) for a Newton Advanced Fellowship
(NAF\R2\180695).
References
8, 2347; (b) Y. Xu, H. Sang, K. Wang, X. Wang, Applied Surf.
Sci., 2014, 316,163; (c) X. Miao, R. Yin, X. Ge, Z. Li, L. Yin, Small,
2017, 13, 1702138; (d) Y. Pan, N. Yang, Y. Chen, Y. Lin, Y. Li, Y.
Liu, C. Liu, J. Power Sources, 2015, 297, 45.
1
(a) R. Masella, Glutathione and Sulfur Amino Acids in Human
Health and Disease; Wiley: Hoboken, NJ, 2009; (b) L. A.
Paquette, Sulfur-Containing Reagents; Wiley: Chichester, UK,
2009; (c) C. E. Hoyle, A. B. Lowe, C. N. Bowman, Chem. Soc.
Rev., 2010, 39, 1355; (d) K. Pachamuthu, R. R. Schmidt, Chem.
Rev. 2006, 106, 160; (e) B. P. Zambrowicz, A. T. Sands, Nat.
Rev. Drug Discovery, 2003, 2, 38; (f) N. Riddell, W. Tam, J. Org.
Chem., 2006, 71, 1934; (g) C. Savarin, J. Srogl, L. S. Liebeskind,
Org. Lett., 2001, 3, 91; (h) G. Hilt, S. Lers, K. Harms, J. Org.
Chem., 2004, 69, 624; (i) H. Takeda, S. Shimada, S. Ohnishi, F.
Nakanishi, H. Matusda, Tetrahedron Lett., 1998, 39, 3701.
Tetrahedron Lett., 1993, 34, 8041; (b) W. E. Truce, H. E. Hill,
M. M. Boudakian, J. Am. Chem. Soc., 1956, 12, 2760.
12 J. Liu, X. Qiu, X. Huang, X. Luo, C. Zhang, J. Wei, J. Pan, Y. Liang,
Y. Zhu, Q, Qin, S. Song, N. Jiao, Nature chem., 2019, 11, 71.
13 (a) J. Li, J. Liu, J. Zhou, Y. Fu, ChemSusChem, 2016, 9, 1339; (b)
M. Domagała, S. J. Grabowski, Chem. Phys., 2010, 367, 1; (c) E.
Bosch, Cryst. Growth Des., 2010, 10, 3808; (d) V. R. Thalladi, A.
Gehrke, R. Boese, New J. Chem. 2000, 24, 463.
14 (a) X. Li, Y. Pan, H. Yi, J. Hu, D. Yang, F. Lv, W. Li, J. Zhou, X. Wu,
A. Lei, L. Zhang, ACS Catal., 2019, 9, 4632; (b) D. Chakraborty,
S. Nandi, D. Mullangi, S. Haldar, C. P. Vinod, R. Vaidhyanathan,
ACS Appl. Mater. Interfaces, 2019, 11, 15670; (c) X. Han, C. Li,
Y. Guo, X. Liu, Y. Zhang, Y. Wang, Appl. Catal. A: Gen., 2016,
2
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 5
Please do not adjust margins