618-48-4Relevant articles and documents
Green and efficient Beckmann rearrangement by Cu(II) contained nano-silica triazine based dendrimer in water
Bahreininejad, Mohammad Hasan,Moeinpour, Farid
, p. 893 - 901 (2021/01/12)
In this research, a Cu(II) contained nano-silica triazine based dendrimer was prepared, characterized, and utilized as a retrievable catalytic system (Cu(II)-TrDen@nSiO2) for green formation of primary amides in water at room temperature. The structure of nanoparticles was fully characterized by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FT-IR), and thermogravimetry analysis (TGA). The results revealed that the nanoparticles have spherical morphology and an average size of around 40 nm. The analysis also illustrated that the copper nanoparticles had been successfully loaded on the nitrogen-rich dendritic structure with a uniform distribution. The inductively coupled plasma analysis showed that about 0.67 mmol/g of Cu was loaded on the Cu(II)-TrDen@nSiO2 support. Mild reaction conditions, excellent yields, environment-friendly synthesis, and easily prepared starting materials are the key features of the present method. The catalyst is easily removed from the reaction media using a simple filtration and can be re-used at least five times without any considerable loss of its catalytic activity.
Visible light-mediated synthesis of amides from carboxylic acids and amine-boranes
Chen, Xuenian,Kang, Jia-Xin,Ma, Yan-Na,Miao, Yu-Qi
supporting information, p. 3595 - 3599 (2021/06/06)
Here, a photocatalytic deoxygenative amidation protocol using readily available amine-boranes and carboxylic acids is described. This approach features mild conditions, moderate-to-good yields, easy scale-up, and up to 62 examples of functionalized amides with diverse substituents. The synthetic robustness of this method was also demonstrated by its application in the late-stage functionalization of several pharmaceutical molecules.
Gram-Scale Preparation of Acyl Fluorides and Their Reactions with Hindered Nucleophiles
Barbasiewicz, Micha?,Tryniszewski, Micha?
, (2021/11/30)
A series of acyl fluorides was synthesized at 100 mmol scale using phase-transfer-catalyzed halogen exchange between acyl chlorides and aqueous bifluoride solution. The convenient procedure consists of vigorous stirring of the biphasic mixture at room temperature, followed by extraction and distillation. Isolated acyl fluorides (usually 7-20 g) display excellent purity and can be transformed into sterically hindered amides and esters when treated with lithium amide bases and alkoxides under mild conditions.
Half-Sandwich Iridium Complexes Based on β-Ketoamino Ligands: Preparation, Structure, and Catalytic Activity in Amide Synthesis
Wang, Yang,Guo, Wen,Guan, Ai-Lin,Liu, Shuang,Yao, Zi-Jian
, p. 11514 - 11520 (2021/07/31)
A series of β-ketoamino-based N,O-chelate half-sandwich iridium complexes with the general formula [Cp*IrClL] have been prepared in good yields. These air-insensitive iridium complexes showed desirable catalytic activity in an amide preparation under mild conditions. A number of amides with diverse substituted groups were furnished in a one-pot reaction with good-to-excellent yields through an amidation reaction of NH2OH·HCl with aldehydes in the presence of these iridium(III) precursors. The excellent catalytic activity, mild reaction conditions, and broad substrate scope gave this type of iridium catalyst potential for use in industry. All of the obtained iridium complexes were well characterized by different spectroscopy techniques. The exact molecular structure of complex 3 has been confirmed by single-crystal X-ray analysis.
Efficient nitriding reagent and application thereof
-
Paragraph 0327-0329, (2021/03/31)
The invention discloses an efficient nitriding reagent and application thereof, wherein the nitriding reagent comprises nitrogen oxide, an active agent, a reducing agent and an organic solvent. By applying the nitriding reagent, nitrogen-containing compounds such as amide, nitrile and the like can be produced, and the method is simple in condition, low in waste discharge amount and simple in reaction equipment.
Method for preparing primary and secondary amide compounds
-
Paragraph 0046-0056, (2021/02/06)
The invention belongs to the field of organic chemical synthesis, and particularly relates to a method for preparing primary and secondary amide compounds. The method for preparing primary and secondary amide compounds comprises the following steps of carrying out catalytic reduction on an N-substituted amide compound at 30-130 DEG C by using a protic solvent as a reduction reagent and a dichloro(p-methyl isopropylbenzene) ruthenium (II) dimer complex as a catalyst to obtain a reaction solution after the reduction reaction is finished, and carrying out post-treatment on the reaction solution to obtain the corresponding primary amide compound or secondary amide compound. According to the method for preparing the primary and secondary amide compounds, the transfer hydrogenation reaction of nitrogen-oxygen and nitrogen-carbon bonds is realized, the reaction conditions are mild and simple, the substrate application range is wide, the operation is convenient, and the corresponding primary amide compound or secondary amide compound is obtained with high efficiency and high selectivity.
Cu(II)–metformin immobilized on graphene oxide: an efficient and recyclable catalyst for the Beckmann rearrangement
Solaiman Hamed, Ahmed,Mohammad Ali, Ehab
, p. 701 - 714 (2019/11/03)
Abstract: In this study, for the first time, the copper(II) nanoparticles (NPs) have been immobilized on metformin-functionalized graphene oxide and then its catalytic applications have been investigated in synthesis of amides from aldoximes (Beckmann rearrangement). The chemical structure of prepared catalyst has been characterized by various analyses like FT-IR, TGA, TEM, SEM, EDX, and ICP. All analyses confirm the successful and stable immobilization of copper NPs on functionalized graphene oxide. This synthesized heterogeneous nanocatalyst showed excellent catalytic activity with high product yields and short reaction times. Also, the suggested catalyst could be recycled ten times without a drastic decrease in its catalytic activity. Graphic abstract: [Figure not available: see fulltext.].
Preparation method of aromatic amide compound
-
Paragraph 0042-0043, (2020/07/15)
The present invention provides a preparation method of an aromatic amide compound. In an organic solvent, under the effect of a catalyst, an aromatic acid compound and an amine source are subjected toa dehydration reaction to obtain the aromatic amide compound, wherein the aromatic acid compound is an aromatic acid, a substituted aromatic acid, a heterocyclic aromatic acid or a substituted heterocyclic aromatic acid; and the substituent group of amide is any substituent group of H, a C1-C8 straight-chain alkyl or branched-chain alkyl group, a benzene ring or an aromatic ring. The aromatic amide compound is an important chemical intermediate, and the synthesis method is mild in reaction condition and high in yield.
Fe3O4@GlcA@Cu-MOF: A Magnetic Metal-Organic Framework as a Recoverable Catalyst for the Hydration of Nitriles and Reduction of Isothiocyanates, Isocyanates, and Isocyanides
Ghorbani-Choghamarani, Arash,Taherinia, Zahra
supporting information, p. 902 - 909 (2020/11/30)
A novel magnetic metal-organic framework (Fe3O4@GlcA@Cu-MOF) has been prepared and characterized by spectroscopic, microscopic, and magnetic techniques. This magnetically separable catalyst exhibited high catalytic activity for nitrile hydration and the ability to reduce isothiocyanates, isocyanates, and isocyanides with excellent activity and selectivity without any additional reducing agent.
Arene-ruthenium(II)-phosphine complexes: Green catalysts for hydration of nitriles under mild conditions
Vyas, Komal M.,Mandal, Poulami,Singh, Rinky,Mobin, Shaikh M.,Mukhopadhyay, Suman
, (2019/12/11)
Three new arene-ruthenium(II) complexes were prepared by treating [{RuCl(μ-Cl)(η6-arene)}2] (η6-arene = p-cymene) dimer with tri(2-furyl)phosphine (PFu3) and 1,3,5-triaza-7-phosphaadamantane (PTA), respectively to obtain [RuCl2(η6-arene)PFu3] [Ru]-1, [RuCl(η6-arene)(PFu3)(PTA)]BF4 [Ru]-2 and [RuCl(η6-arene)(PFu3)2]BF4 [Ru]-3. All the complexes were structurally identified using analytical and spectroscopic methods including single-crystal X-ray studies. The effectiveness of resulting complexes as potential homogeneous catalysts for selective hydration of different nitriles into corresponding amides in aqueous medium and air atmosphere was explored. There was a remarkable difference in catalytic activity of the catalysts depending on the nature and number of phosphorus-donor ligands and sites available for catalysis. Experimental studies performed using structural analogues of efficient catalyst concluded a structural-activity relationship for the higher catalytic activity of [Ru]-1, being able to convert huge variety of aromatic, heteroaromatic and aliphatic nitriles. The use of eco-friendly water as a solvent, open atmosphere and avoidance of any organic solvent during the catalytic reactions prove the reported process to be truly green and sustainable.