Welcome to LookChem.com Sign In|Join Free

CAS

  • or

7631-99-4

Post Buying Request

7631-99-4 Suppliers

Recommended suppliersmore

This product is a nationally controlled contraband, and the Lookchem platform doesn't provide relevant sales information.

7631-99-4 Usage

Chemical Properties

Different sources of media describe the Chemical Properties of 7631-99-4 differently. You can refer to the following data:
1. Colorless tripartite crystal or diamond crystals or white tiny crystal or powder. Odourless, taste salty, slightly bitter. Soluble in water and liquid ammonia, soluble in ethanol, methanol, slightly soluble in glycerol and acetone.
2. Sodium nitrate, NaNO3, also known as soda niter and Chile saltpeter, is a fire-hazardous, transparent, colorless and odorless crystalline solid. It is soluble in glycerol and water,decomposes when heated,and melts at 308°C (585 °F). Sodium nitrate is used in making nitric and sulfuric acids, in the manufacture of glass and pottery enamel, as a fertilizer, as a food preservative, in explosives, and as a welding flux.
3. Sodium nitrate, white solid, soluble, source in nature is Chile, in the fixation of atmospheric nitrogen HNO3 is frequently transformed by sodium carbonate into sodium nitrate, and the solution evaporated. Used (1) as an important nitrogenous fertilizer, (2) as a source of nitrate and HNO3, (3) in pyrotechnics, (4) in fluxes.

Uses

Different sources of media describe the Uses of 7631-99-4 differently. You can refer to the following data:
1. Sodium nitrate is one of the earliest nitrogen fertilizer, can be used for acid soil, especially suitable for root crops, such as sugar beet and radish. In the end of the 19th century to the early 20th century, Chile exploited sodium nitrate mining in large scale as nitrogen fertilizer for the world. Farmers in Xinjiang uygur autonomous region in China digged desert surface soil contain NaNO3 to plant grape fruits, and the fertilizer effect is remarkable. Sodium nitrate can be used to make nitrate, picric acid, explosives, mineral raw materials, dyes, osmotic pressure regulator in medicine and other nitrogen compounds, it also can be used in glass, metallurgy, light industry and other industrial sectors. In glass industry, it can be used for the production of various kinds of glass and its products of defoaming agent, decoloring agent, clarifying agent and oxidation solubilizer. Enamel industry uses it as oxidant, solubilizer, and to make enamel powder. Machinery industry uses it as metal cleaner, dispensing black metallic blue agent. Metallurgical industry uses it for steel and aluminum alloy heat treatment. Light industry uses it as combustion improver of cigarettes. Pharmaceutical industry uses it as a medium of penicillin. It can be reduction by bacteria into sodium nitrite in meat, which results in color protection and bacteriostatic effect, and can be used as food color fixative in China. It also can be used as decolorizing agent of molten caustic soda and analytical reagent.
2. Sodium Nitrate is the salt of nitric acid that functions as an antimi- crobial agent and preservative. it is a naturally occurring substance in spinach, beets, broccoli, and other vegetables. it consists of color- less, odorless crystals or crystalline granules. it is moderately deli- quescent in moist air and is readily soluble in water. it is used in meat curing to develop and stabilize the pink color. see nitrate.
3. In manufacturing of HNO{3}, as a catalyst to manufacture H{2}SO{4}, in manufacturing of glass, enamel for pottery, sodium nitriteSodium nitrate is used in the production of fertilizers, nitric acid, pyrotechnics, smoke-bombs, glass and pottery enamels. In combination with boron trifluoride it forms an efficient reagent for nitration of aromatic compounds. Adsorption on alumina provides an environmentally benign aromatic nitrating agent. Further it finds use as food preservative and as a solid rocket propellant. It is also used as an electrolyte in a salt bridge, and as thermal storage medium in power generation systems.
4. manufacture of nitric acid and as catalyst in the manufacture of sulfuric acid. manufacture of sodium nitrite, glass, enamels for pottery; in matches; for improving burning properties of tobacco; pickling meats; as color fixative in meats. Clinical reagent (parasites). The technical grade is used as fertilizer.

Water Solubility

The dissolved grams per 100 ml of water at different temperature (oC): 73g/0oC; 80.8g/10oC; 87.6g/20oC; 94.9g/30oC; 102g/40oC; 122g/60oC; 148g/80oC; 180g/100oC .

Identification Test

Nitrate test (IT-23) and sodium salt test (IT-28) are positive.

Content Analysis

GB 1891-86 method Principle: Boiling nitrate and nitrogen alloy (45A150; u5Zn) in strong alkaline solution results in releasing of hydrogen, which reduces nitrogen nitrate (or other nitrogen compounds) to ammonia. Absorption ammonia with excess sulfuric acid then titration with standard alkali solution. Reagent and Solution : Preparation of mixed indicating liquid: Dissolve 0.12 g of methyl red and 0.12 g of methylene blue in 100 ml 95% ethanol solution. Nitrogen alloy is smashed to pass through a screen of 20 meshes, and the content of alloy can pass through a screen of 80 meshes should not exceed 20%. Dissolve 14 g (Accurate to 0.0002 g) of fully blended sample in water with a beaker, then transfer into 500 ml volumetric flask, dilute to scale and shake to be a backup. Use the distillation unit as shown. Draw 50 ml of 0.5 mol/L sulfuric acid solution using straw into 500 ml conical flask, then add 50 ml of water. Draw 50 ml of prepared liquid sample through a straw into a 1000 ml flat-bottomed distillation flask, then add 7.5 g nitrogen alloy, and 150 ml of water along the wall of bottle. Join the distillation unit according to the figure, and make the tube 4 hit the end of the bottom of the bottle. Add 70 ml of sodium hydroxide solution (300 g/L solution) in distillation bottle 1 quickly, immediately insert rubber stopper, reaction after 20 min at room temperature, micro heat 10 min, then high temperature distillation. After boiling 50~60 min, and obtain about 270 ml of solution in bottle (residual liquid product is about a third of the initial volume), down the conical flask, leave the tip of the tube 4 out of the liquid level inside the conical flask solution, then wash pipe 4 with water, stop heating. Blank experiment was carried out at the same time under the same conditions in addition to the water replacement of liquid sample. In the formula, c-concentration of standard sodium hydroxide solution (0.5 mol/L) Vo-Blank consumption volume of NaOH standard solution, ml; V-Sample consumption volume of NaOH standard solution, ml; m-The quality of sample, g; z-water content measured by the standard, %; z,-Sodium nitrite content measured by the standard, %; 0.08499-Millimoles quality of sodium nitrite, g; 1.232-The coefficient of sodium nitrite to sodium nitrate. The difference between the two parallel determination results should not be greater than 0.3%. Take the arithmetic mean as the determination results of parallel determination results. The difference between the different laboratory determination results is not greater than 0.5%. Notice: Before testing the sample, verification using replacement of potassium nitrate with the same method. Calculation method is as follows. In the formula, G-The quality of the benchmark potassium nitrate, g; 0.10111-millimoles quality of potassium nitrate, g. If several analysis results of potassium nitrate were between 99.95%~100.05%, the test equipment is regarded in good condition (at least to be between 99.80%~100.10%). FAO/WHO method Accurately weight 0.4 g of sample which has been dried at 105oC for 4 h into a 500 ral round bottom flask, then add 300 ml water. Add 3 g of Devardas alloy powder and 15 ml of 40% sodium hydroxide solution, join the splash ball and condenser on the flask. Stewing for 2h. Use a bottle containing50 ml of 0.1 mol/L sulfate acid to collect 250 ml of distillate, add three drops of methyl red-methylene blue test solution (TS-150), use 0~mol/L sodium hydroxide titration excess sulfuric acid. Blank experiment was carried out at the same time. Every mL0.1 mol/L equivalent to 8.5 mg sulfate sodium nitrate (NaNO3).

Toxicity

ADI 0~3.7 mg/kg (NO3-meter, but do not apply to the baby younger than 3 months FAO/WHO, 2001). LD50 1100~2000mg/kg (rats, through the mouth). Accordance to the stipulations of GB 2760-86, it can be used in hair color agent and in meat products, the maximum amount is 0.5 g/kg; residues be calculated by sodium nitrite, meat canned must not exceed 0.05 g/kg, meat products shall not be more than 0.03 g/kg. Infants younger than six months are particularly sensitive to nitrate, do not be used for baby food. HACSG (EC child protection group) suggestions restriction for infants and young children food. Dust can irritate the lungs and skin. Sodium nitrate has the characteristic of reduction to sodium nitrite in body, often resulting in formation of denaturation of hemoglobin, drinking water containing 50~100 RNG/L sodium nitrate, denaturation of hemoglobin in the blood rise significantly. Workers operate the production must wear work clothes, protective masks, latex gloves and other labor insurance supplies, in case of dust suction and protect respiratory and skin. Production equipment should be closed and the workshop ventilation is good. Take a shower after work.

Utilization Limitation

GB 2760-1996: same as "17301," potassium nitrate. The FAO/WHO (1984 mg/kg): cooked the ham, meat cooked pork shoulder, maximum amount 500; General cheese 50. FDA, § 172.170 (2000 mg/kg): sodium nitrate total 500, 200 total sodium nitrite.

Production Method

Absorption method: Bubble the exhaust derived from nitric acid production (contain NO + NO2 0.5%~1.5%) into the bottom of absorption tower, use soda solution with a relative density of 1.240~1.3 and temperature of 25~60 oC spraying from the top of the tower to absorption nitrous oxide in gas, and then obtain the neutralizer. Add neutralizing liquid and nitric acid into converter, sodium nitrite will transform into sodium nitrate, the conversion temperature is between 90~105 oC, stirring with air at the same time. Using soda solution to neutralize the free acid in converted solution, keeping the alkalinity below 0.3 g/L, in atmospheric evaporation to solution the boiling point of 123~123 oC, through cooling crystallization, centrifugal separation, drying, sodium nitrate is obtained. Na2CO3+NO+NO2→2NaNO2+CO2↑ Na2CO3+2NO2→NaNO2+NaNO3+CO2↑ 3NaNO2+2HNO3→3NaNO3+H2O+2NO↑ Nitrogen gas released from oxidation reaction process can be returned to nitric acid production system to make nitric acid. Double decomposition method: Mix 50%~52% of calcium nitrate, sodium sulfate and calcium nitrate solution cycle solution into a stirring reactor, reaction was conducted in the 50~55 oC under stirring for 3~4 h, filter the plaster through vacuum filter, and further filter to remove impurities, remove plaster after been washed with water, wash water merged with the filtrate, part of them return to diluted slurry reactor, and part of them been evaporation and concentration, through cooling crystallization, centrifugal separation and drying, sodium nitrate is obtained. Ca(NO3)2+Na2SO4→2NaNO3+CaSO4↓ Direct extraction method: The sodium nitrate ore is broken to a certain size, use fresh water or brine to spray heap leaching, then get a certain concentration of sodium nitrate brine, cooling to separate mirabilite, send brine to evaporation pans tan, until sodium nitrate alum (Na2SO4, NaNO3·H2O) crystal appeared, after filtering, the by-produc of sodium chloride brine continue insolation evaporation to get semi-finished products contained sodium nitrate alum. Melt the semi-finished product with a certain amount of brine (or crystallization mother liquor), after been filtered to remove impurities, filtrated the cooling crystallization, centrifugal separation, drying, sodium nitrate is obtained. Conversion method: Sodium nitrite concentration and dilute nitric acid mother liquor are sent into the tower, through steam heating and ventilation with compressed air mixing, then transform into sodium nitrate solution, add soda solution until slightly alkaline solution, then through purification, filtration, removal of arsenic and heavy metals, evaporation and concentration, cooling crystallization, centrifugal separation, drying, the food grade sodium nitrate is obtained. 3NaNO2+2HNO3→3NaNO3+H2O+2NO↑

Category

Oxidizing agent

Toxicity Grading

Poison.

Acute Toxicity

Oral-LD50 in rats: 1267 mg/kg. Static chamber-LD50 in mice: 175 mg/kg.

Explosive Dangerous Features

Explosive mixed with sulfur, phosphorus, charcoal and other flammable.

Flammability Hazard Characteristics

Decompose to generate oxygen when been heated; flammable when encounter organic matter, reducing agent, charcoal, sulfur and phosphorus; combustion produces toxic nitrogen oxides smoke.

Transportation and Storing Characteristics

Ventilated warehouse; light discharge; keep separate from sulfur, phosphorus, organic matter, reducing agent and charcoal tinder.

Extinguishing Agent

Fog water and sand.

Description

Sodium nitrate, also known as Chile saltpeter and soda niter, has a molecular formula of NaNO3. Sodium nitrate is a colorless, odorless, transparent crystal. It oxidizes when exposed to air and is soluble in water. This material explodes at 1000°F (537°C), much lower than temperatures encountered in many fires. Sodium nitrate is toxic by ingestion and has caused cancer in test animals. When used in the curing of fish and meat products, it is restricted to 100 ppm. Sodium nitrate is incompatible with ammonium nitrate and other ammonium salts. The four-digit UN identification number is 1498. Sodium nitrate is used as an antidote for cyanide poisoning and in the curing of fish and meat.

Physical properties

Colorless crystalline solid; saline taste; trigonal, and rhombohedrals structure; density 2.257g/cm3; refractive index 1.587 (trigonal) and 1.336 (rhombohedral); melts at 308°C; decomposes at 380°C; specific conductance 95 μmhos/cm at 300°C; viscosity 2.85 centipoise at 317°C; very soluble in water 92.1 g/100 mL at 25°C and 180 g/100 mL at 100°C; very soluble in liquid ammonia; soluble in alcohol.

Occurrence

There are several natural deposits of sodium nitrate in various parts of the world, including Chile, Mexico, Egypt, and the United States. The most important application of sodium nitrate is its use as a fertilizer in agriculture. It is an effective fertilizer for cotton, tobacco, and vegetable crops. Its agricultural applications, however, have dwindled considerably in recent years because of the growth of ammonium nitrate and other fertilizers.Another major use of sodium nitrate is in manufacturing explosives. It is a component of many types of dynamites and water-based slurry type blasting explosives. Sodium nitrate also is used in making charcoal briquettes. Sodium nitrate is used as an oxidizing and fluxing agent in manufacturing vitreous glass, fiberglass, porcelain, and enamels. Other uses are in the heat-treatment baths for alloys and metals, as a food preservative, in curing meats, and in preparing various salts.

Production Methods

Sodium nitrate is recovered from natural deposits. One such process, known as the Guggenheim nitrate process, is briefly outlined below: The ore is crushed. Sodium nitrate is leached from the ore by extraction with a brine solution at 40°C. The brine for leaching is made up of an aqueous solution of magnesium sulfate, MgSO3, and calcium sulfate, CaSO3. The caliche variety of Chilean ore contains mostly sodium nitrate and sodium chloride as the main saline components, along with limestone, clays, sand, lime, and inert volcanic rocks. Sodium nitrate usually occurs in this ore as a double salt with sodium sulfate NaNO3?Na2SO3?H3O. This double salt, which is sparingly soluble in water, is broken down by magnesium in leaching brine solution, thus releasing more sodium nitrate into the extract. Sodium nitrate finally is recovered from the leachate brine by fractional crystallization.Brines of other compositions have been used to extract sodium nitrate from its ores. Many such processes, including the Shanks process practiced in the past to produce sodium nitrate, are now obsolete.

Definition

ChEBI: The inorganic nitrate salt of sodium.

General Description

A white crystalline solid. Noncombustible but accelerates the burning of combustible materials. If large quantities are involved in fire or the combustible material is finely divided an explosion may result. May explode under prolonged exposure to heat or fire. Toxic oxides of nitrogen are produced in fires. Used in solid propellants, explosives, fertilizers, and for many other uses.

Air & Water Reactions

Soluble in water.

Reactivity Profile

A mixture of Sodium nitrate and sodium hypophosphite constitute a powerful explosive [Mellor 8, Supp. 1:154 1964]. Sodium nitrate and aluminum powder mixtures have been reported to be explosive,[Fire, 1935, 28, 30]. The nitrate appears to be incompatible with barium thiocyanate, antimony, arsenic trioxide/iron(II) sulfate, boron phosphide, calcium-sodium alloy, magnesium, metal amidosulfates, metal cyanides, powdered charcoal, peroxyformic acid, phenol/trifluoroacetic acid, sodium, sodium nitrite/sodium sulfide, sodium phosphinate, sodium thiosulfate, tris( cyclopentadienyl)cerium, and even wood [Bretherick 5th ed., 1995].

Hazard

Fire risk near organic materials, ignites on friction and explodes when shocked or heated to 1000F (537C). Toxic by ingestion; content in cured meats, fish, and other food products restricted.

Health Hazard

INGESTION: Dizziness, abdominal cramps, vomiting, bloody diarrhea, weakness, convulsions, and collapse. Small repeated doses may cause headache and mental impairment.

Flammability and Explosibility

Nonflammable

Agricultural Uses

Sodium nitrate is the oldest known nitrogenous fertilizer. It is a white, shiny crystal available in nature as Chilean saltpeter or Chilean nitrate. Sodium nitrate is manufactured by two methods. In the first, known as the Guggenheim method, the fertilizer is extracted from a mined product, called caliche, mined mostly in Chile; hence the name (Chilean saltpeter or Chilean nitrate). The caliche is dissolved in warm water and then cooled to 0°C to produce sodium nitrate crystals, which are circulated through heat exchangers. The circulation keeps the crystals suspended, to finally form pellets. Caliche mined in Chile, contains sodium nitrate (8 to 20%), potassium and magnesium nitrates and salts like borates, sulphates and chlorides. Approximately, one ton of sodium nitrate of 99% purity is obtained from 10 tons of caliche. Sodium nitrate is shipped in airtight containers. The pellets are also coated to impart free-flowing characteristics. Sodium nitrate is also manufactured from nitric acid and soda ash, using salt and oyster shells. Nitric acid is reacted with soda ash forming sodium nitrate solution. Most water is removed by evaporation and the rest is heated to a high temperature and sprayed through nozzles. Sodium nitrate solidifies as pellets while coming through the nozzles. Sodium nitrate fertilizer is water-soluble. It contains 16% nitrogen and about 26% sodium. Plants absorb most of the nitrogen in a nitrate form and sodium nitrate is a commonly preferred fertilizer, although the nitrogen content of sodium nitrate is lesser than that in many other inorganic nitrogen fertilizers. Sodium nitrate has a neutralizing effect on soil acidity because of its inherent basic residual effect. Its neutralizing value is 0.82 kg of calcium carbonate equivalent to 0.45 kg of sodium nitrate. The field crops which benefit most from sodium nitrate application are sugar beet and cotton. If applied excessively, sodium nitrate can damage the soil structure by reducing the flocculation. But normal applications of 100 to 200 kg of fertilizer/hectare/year do not affect the soil structure.

Safety Profile

Human poison by ingestion. Poison by intravenous route.Questionable carcinogen with experimental tumorigenic data. Human mutation data reported. A powerful oxidizer. It will iqte with heat or friction. Explodes when heated to over 1000°F, or when mixed with cyanides, sodium hypophosphte, boron phosphide. Forms explosive mixtures with aluminum powder, antimony powder, barium thiocyanate, metal amidosulfates, sodium, sodium phosphinate, sodium thiosulfate, sulfur + charcoal (gunpowder). Potentially violent reaction or ignition when mixed with bitumen, organic matter, calcium-shcon alloy, jute + magnesium chloride, magnesium, metal cyanides, nonmetals, peroxyformic acid, phenol + trifluoroacetic acid. Incompatible with acetic anhydride, barium thocyanate, wood. A dangerous disaster hazard. Experimental reproductive effects. When heated to decomposition it emits toxic fumes of NOx and Na2O. See also NITRATES.

Purification Methods

Crystallise NaNO3 from hot water (0.6mL/g) by cooling to 0o, or from a concentrated aqueous solution by adding MeOH. Dry it under a vacuum at 140o. After two recrystallisations, technical grade sodium nitrate had K, Mg, B, Fe Al, and Li at 100, 29, 0.6, 0.4, 0.2 and 0.2 ppm respectively. (See KNO3.)

Check Digit Verification of cas no

The CAS Registry Mumber 7631-99-4 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 7,6,3 and 1 respectively; the second part has 2 digits, 9 and 9 respectively.
Calculate Digit Verification of CAS Registry Number 7631-99:
(6*7)+(5*6)+(4*3)+(3*1)+(2*9)+(1*9)=114
114 % 10 = 4
So 7631-99-4 is a valid CAS Registry Number.
InChI:InChI=1/NO3.Na/c2-1(3)4;/q-1;+1

7631-99-4SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 16, 2017

Revision Date: Aug 16, 2017

1.Identification

1.1 GHS Product identifier

Product name sodium nitrate

1.2 Other means of identification

Product number -
Other names butyl-xanthicacipotassiumsalt

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:7631-99-4 SDS

7631-99-4Synthetic route

Ce(OCMe3)(NO3)3(THF)2
121314-35-0

Ce(OCMe3)(NO3)3(THF)2

sodium t-butanolate
865-48-5

sodium t-butanolate

A

sodium nitrate
7631-99-4

sodium nitrate

B

Ce(OCMe3)4(THF)2
122423-58-9

Ce(OCMe3)4(THF)2

Conditions
ConditionsYield
In tetrahydrofuran exclusion of air and water, stirred for 20 h, 3 equiv. of NaOCMe3; centrifuged, removal of solvent;A 100%
B 80-95
nitric acid
7697-37-2

nitric acid

sodium oxalate
62-76-0

sodium oxalate

sodium nitrate
7631-99-4

sodium nitrate

Conditions
ConditionsYield
In water byproducts: oxalic acid; between 15 and 65°C;; pure NaNO3;;99%
ammonium cerium (IV) nitrate
16774-21-3

ammonium cerium (IV) nitrate

sodium t-butanolate
865-48-5

sodium t-butanolate

A

sodium nitrate
7631-99-4

sodium nitrate

B

Ce(OCMe3)(NO3)3(THF)2
121314-35-0

Ce(OCMe3)(NO3)3(THF)2

C

tert-butyl alcohol
75-65-0

tert-butyl alcohol

Conditions
ConditionsYield
In tetrahydrofuran byproducts: NH3; exclusion of air and water, stirred for 2 h; filtered (NaNO3), removal of solvent from filtrate, extn. (toluene), removal of solvent; elem. anal.;A 99%
B 56%
C n/a
Nitrogen dioxide
10102-44-0

Nitrogen dioxide

sodium chloride
7647-14-5

sodium chloride

sodium nitrate
7631-99-4

sodium nitrate

Conditions
ConditionsYield
In neat (no solvent) byproducts: NOCl; at ambient pressure; treatment of solid NaCl with a Cl2/NO2-mixture; 98.8% NaNO3 after 8-10times;;98.8%
In neat (no solvent) byproducts: NOCl; at ambient pressure; treatment of solid NaCl with a Cl2/NO2-mixture; 98.8% NaNO3 after 8-10times;;98.8%
In neat (no solvent) byproducts: NOCl; treatment of solid NaCl with NO2;; dissolving NaNO3 in liquid NH3, separation from unreacted chloride;;
ammonium cerium (IV) nitrate
16774-21-3

ammonium cerium (IV) nitrate

sodium t-butanolate
865-48-5

sodium t-butanolate

A

sodium nitrate
7631-99-4

sodium nitrate

B

Ce2(OCMe3)4(μ-OCMe3)3(μ3-OCMe3)2Na
122423-62-5

Ce2(OCMe3)4(μ-OCMe3)3(μ3-OCMe3)2Na

C

tert-butyl alcohol
75-65-0

tert-butyl alcohol

Conditions
ConditionsYield
In tetrahydrofuran byproducts: NH3; exclusion of air and water, stirred for 2 h; filtered (NaNO3), removal of solvent from filtrate, extn. (hexane), removal of solvent; elem. anal.;A 94%
B 96%
C n/a
ammonium cerium (IV) nitrate
16774-21-3

ammonium cerium (IV) nitrate

sodium t-butanolate
865-48-5

sodium t-butanolate

A

sodium nitrate
7631-99-4

sodium nitrate

B

Ce(OCMe3)4(THF)2
122423-58-9

Ce(OCMe3)4(THF)2

C

tert-butyl alcohol
75-65-0

tert-butyl alcohol

Conditions
ConditionsYield
In tetrahydrofuran byproducts: NH3; exclusion of air and water, stirred for 2 h; filtered (NaNO3), removal of solvent from filtrate, extn. (hexane), removal of solvent; elem. anal.;A 96%
B 65%
C n/a
sodium nitrite

sodium nitrite

sodium nitrate
7631-99-4

sodium nitrate

Conditions
ConditionsYield
In N,N-dimethyl-formamide N2O4 addn. (dropwise) to NaNO2 suspn. (DMF), soln. keeping for 1 h at 0°C, oxides of nitrogen removal (vac.), pptn. on ether addn.;81%
chlorine nitrate
14545-72-3

chlorine nitrate

sodium chloride
7647-14-5

sodium chloride

A

hydrogenchloride
7647-01-0

hydrogenchloride

B

sodium nitrate
7631-99-4

sodium nitrate

C

hypochloric acid
14989-30-1

hypochloric acid

D

chlorine
7782-50-5

chlorine

Conditions
ConditionsYield
In neat (no solvent) experiments performed in a glass Knudsen cell at 298 K; not isolated, detected by mass spectrometry;A 0%
B n/a
C n/a
D 81%
chlorine nitrate
14545-72-3

chlorine nitrate

A

hydrogenchloride
7647-01-0

hydrogenchloride

B

sodium nitrate
7631-99-4

sodium nitrate

C

hypochloric acid
14989-30-1

hypochloric acid

D

chlorine
7782-50-5

chlorine

Conditions
ConditionsYield
With synthetic sea salt In neat (no solvent) experiments performed in a glass Knudsen cell at 298 K; not isolated, detected by mass spectrometry;A n/a
B n/a
C n/a
D 78%
sodium bromide dihydrate

sodium bromide dihydrate

mercury(II) oxide

mercury(II) oxide

A

sodium nitrate
7631-99-4

sodium nitrate

B

mercury dibromide

mercury dibromide

Conditions
ConditionsYield
In nitric acid 2-3 times washed with H2O; dried at 60-70°C;;A n/a
B 70%
calcium(II) nitrate
13477-34-4

calcium(II) nitrate

sodium chloride
7647-14-5

sodium chloride

sodium nitrate
7631-99-4

sodium nitrate

Conditions
ConditionsYield
In water preparation on cation exchange resins, 52% Ca-nitrate soln., 26% NaCl-soln.;; crystn.;;70%
In water preparation on cation exchange resins, 52% Ca-nitrate soln., 26% NaCl-soln.;; crystn.;;70%
In water equilibrium in aq. soln.;;
sodium azide

sodium azide

Nitryl chloride

Nitryl chloride

A

sodium nitrate
7631-99-4

sodium nitrate

B

sodium chloride
7647-14-5

sodium chloride

Conditions
ConditionsYield
In neat (no solvent) ambient temp.;A 55%
B 12%
In neat (no solvent) ambient temp.;A 55%
B 12%
nitric acid
7697-37-2

nitric acid

sodium carbonate
497-19-8

sodium carbonate

sodium nitrate
7631-99-4

sodium nitrate

Conditions
ConditionsYield
at 90℃; under 760.051 Torr; for 0.3h; Concentration; Temperature; Time;45%
In water react. of natural soda with dild. HNO3, tereatment of the Na2CO3-containing mineral with the soln. at 200°C under pressure, filtration, evapn., fractionated crystn.;; NaNO3 and mixture of K- and Na-nitrate after fractionated crystn.;;
With leucite In water treatment of leucite with HNO3, react. of resulting nitrates with Na2CO3;;
lanthanum(III) nitrate hexahydrate

lanthanum(III) nitrate hexahydrate

2-(diphenylphosphinoyl)-2-phenylethenol
23040-18-8

2-(diphenylphosphinoyl)-2-phenylethenol

sodium
7440-23-5

sodium

A

sodium nitrate
7631-99-4

sodium nitrate

B

tris[2-(diphenylphosphonoyl)-2-phenylethenolato]lanthanum(III) 1.5hydrate

tris[2-(diphenylphosphonoyl)-2-phenylethenolato]lanthanum(III) 1.5hydrate

Conditions
ConditionsYield
In tetrahydrofuran addn. of Na to soln. of P-ligand, addn. of soln. of lanthanide nitrate, stirring (10 - 60 min; pptn. of NaNO3); addn. of water, solvent removal (vac.), washing (water), dissol. in Et2O, filtration, solvent removal;A n/a
B 43%
iodo-methanesulfonic acid ; sodium salt

iodo-methanesulfonic acid ; sodium salt

silver nitrate

silver nitrate

A

sodium nitrate
7631-99-4

sodium nitrate

B

iodomethanesulfonic acid; silver salt
36647-97-9

iodomethanesulfonic acid; silver salt

Conditions
ConditionsYield
In ethanol solns. AgNO3 in hot EtOH and ICH2SO3Na*H2O in hot EtOH were mixed and allowed to cool to room temp.; soln. was filtered and concd.; elem. anal.;A n/a
B 31%
sulfuric acid
7664-93-9

sulfuric acid

sodium nitrite
7632-00-0

sodium nitrite

A

sodium nitrate
7631-99-4

sodium nitrate

B

nitrogen(II) oxide
10102-43-9

nitrogen(II) oxide

C

sodium sulfate
7757-82-6

sodium sulfate

D

dinitrogen monoxide
10024-97-2

dinitrogen monoxide

Conditions
ConditionsYield
byproducts: H2O, N2; NO collection, storing over dil. sodium hydroxide soln. (NO2 impurity elimination);A n/a
B n/a
C n/a
D 1%
silver nitrate

silver nitrate

sodium chloride
7647-14-5

sodium chloride

A

sodium nitrate
7631-99-4

sodium nitrate

B

silver(I) chloride

silver(I) chloride

Conditions
ConditionsYield
In water Product distribution / selectivity;
With benzalkonium chloride (BC) In water Product distribution / selectivity;
magnesium(II) nitrate
13446-18-9

magnesium(II) nitrate

ammonium chloride

ammonium chloride

sodium chloride
7647-14-5

sodium chloride

sodium nitrate
7631-99-4

sodium nitrate

Conditions
ConditionsYield
In water reaction in neutral aq. soln., pptn. of pure NaNO3 when cooling to 20 to 18°C;;
In water reaction in neutral aq. soln., pptn. of pure NaNO3 when cooling to 20 to 18°C;;
nitric acid
7697-37-2

nitric acid

sodium carbonate
497-19-8

sodium carbonate

sodium sulfate
7757-82-6

sodium sulfate

sodium nitrate
7631-99-4

sodium nitrate

Conditions
ConditionsYield
In water treatment of dolomite with HNO3, pptn. of CaSO4 and MgCO3 by successive addn. of Na2SO4 and Na2CO3, winning of NaNO3 from the filtrate;;
In water treatment of dolomite with HNO3, pptn. of CaSO4 and MgCO3 by successive addn. of Na2SO4 and Na2CO3, winning of NaNO3 from the filtrate;;
Nitrogen dioxide
10102-44-0

Nitrogen dioxide

A

sodium nitrate
7631-99-4

sodium nitrate

B

sodium nitrite
7632-00-0

sodium nitrite

Conditions
ConditionsYield
oxidation;
oxidation;
sodium azide

sodium azide

ammonium cerium (IV) nitrate
16774-21-3

ammonium cerium (IV) nitrate

A

sodium nitrate
7631-99-4

sodium nitrate

B

ammonium nitrate

ammonium nitrate

C

nitrogen
7727-37-9

nitrogen

D

Conditions
ConditionsYield
In water
In water
sodium nitrate
7631-99-4

sodium nitrate

nickel(II) chloride hexahydrate

nickel(II) chloride hexahydrate

nickel(II) oxide
1313-99-1

nickel(II) oxide

Conditions
ConditionsYield
In melt Kinetics; byproducts: NaCl, NO2, O2; mixt. of Na salt/Ni salt (8/1) heated up to 500°C with a rate of 150°C/h, cooled in furnace; washed with H2O, insol. residue filtered off; elem. anal.;100%
sodium nitrate
7631-99-4

sodium nitrate

copper(II) choride dihydrate

copper(II) choride dihydrate

copper(II) oxide

copper(II) oxide

Conditions
ConditionsYield
In melt byproducts: NaCl, NO2, O2; mixt. of Na salt/Cu salt (8/1) heated up to 500°C with a rate of 150°C/h, cooled in furnace; washed with H2O, insol. residue filtered off; elem. anal.;100%
sodium nitrate
7631-99-4

sodium nitrate

zinc nitrate tetrahydrate

zinc nitrate tetrahydrate

zinc(II) oxide

zinc(II) oxide

Conditions
ConditionsYield
In melt Kinetics; byproducts: NaNO3, NO2, O2; mixt. of Na salt/Zn salt (8/1) heated up to 500°C with a rate of 150°C/h, cooled in furnace; washed with H2O, insol. residue filtered off; elem. anal.;100%
sodium nitrate
7631-99-4

sodium nitrate

hydrogen fluoride
7664-39-3

hydrogen fluoride

sodium fluoride

sodium fluoride

Conditions
ConditionsYield
20 min, 250 °C;;100%
20 min, 250 °C;;100%
sodium nitrate
7631-99-4

sodium nitrate

copper(II) nitrate trihydrate

copper(II) nitrate trihydrate

copper(II) oxide

copper(II) oxide

Conditions
ConditionsYield
In melt byproducts: NaNO3, NO2, O2; mixt. of Na salt/Cu salt (8/1) heated up to 500°C with a rate of 150°C/h, cooled in furnace; washed with H2O, insol. residue filtered off; elem. anal.;100%
sodium nitrate
7631-99-4

sodium nitrate

nickel(II) nitrate hexahydrate

nickel(II) nitrate hexahydrate

nickel(II) oxide
1313-99-1

nickel(II) oxide

Conditions
ConditionsYield
In melt Kinetics; byproducts: NaNO3, NO2, O2; mixt. of Na salt/Ni salt (8/1) heated up to 500°C with a rate of 150°C/h, cooled in furnace; washed with H2O, insol. residue filtered off; elem. anal.;100%
sodium nitrate
7631-99-4

sodium nitrate

[(bpy)PdIV(CH2CMe2-o-C6H4)(F)(OTf)]

[(bpy)PdIV(CH2CMe2-o-C6H4)(F)(OTf)]

C20H20FN3O3Pd

C20H20FN3O3Pd

Conditions
ConditionsYield
In acetonitrile at 25℃; for 5h;98%
tellurium

tellurium

sodium nitrate
7631-99-4

sodium nitrate

tellurium(IV) oxide

tellurium(IV) oxide

Conditions
ConditionsYield
In melt Te and NaNO3 were molten for 2 h at 400-430 °C (molar ratio 1/2-2.5), the melt was dissolved in aq. KOH(10%) forming K2TeO3 which was treated with HNO3;;97.5%
methanol
67-56-1

methanol

sodium nitrate
7631-99-4

sodium nitrate

Ni(6,6'-{[ethane-1,2-diylbis(azanylylidene)]bis(methanylylidene)}bis(2-methoxyphenolate))
41754-63-6

Ni(6,6'-{[ethane-1,2-diylbis(azanylylidene)]bis(methanylylidene)}bis(2-methoxyphenolate))

C19H22N3NaNiO8

C19H22N3NaNiO8

Conditions
ConditionsYield
In dichloromethane at 20℃; for 2h;97%
sodium nitrate
7631-99-4

sodium nitrate

barium sulfide

barium sulfide

A

sodium sulfide

sodium sulfide

B

barium(II) nitrate

barium(II) nitrate

Conditions
ConditionsYield
With carbon disulfide; hydrogen sulfide In water metathesis of BaS with NaNO3 by react. of a mixt. of satd. solutions of NaNO3 and an excess of BaS in an atmosphere of H2S or in presence of C or H or CS2 or CO or hydrocarbons as other reducing agents; heating at 110 °C for 1 h;; isolation of Ba(NO3)2 and NaHS by fractional crystallization; reaction of NaHS forming Na2S and H2S; addition of a small amount of CS2 facilitates the isolation;;A 95%
B n/a
With carbon disulfide; hydrogen sulfide In water metathesis of BaS with NaNO3 by react. of a mixt. of satd. solutions of NaNO3 and an excess of BaS in an atmosphere of H2S or in presence of C or H or CS2 or CO or hydrocarbons as other reducing agents; heating at 110 °C for 1 h;; isolation of Ba(NO3)2 and NaHS by fractional crystallization; reaction of NaHS forming Na2S and H2S; addition of a small amount of CS2 facilitates the isolation;;A 95%
B n/a
sodium nitrate
7631-99-4

sodium nitrate

C12H18N2NiO2*H2O

C12H18N2NiO2*H2O

2C12H18N2NiO2*2Na(1+)*2NO3(1-)

2C12H18N2NiO2*2Na(1+)*2NO3(1-)

Conditions
ConditionsYield
In methanol; acetonitrile at 20℃; for 0.5h;95%
sodium nitrate
7631-99-4

sodium nitrate

sodium nitrite
7632-00-0

sodium nitrite

Conditions
ConditionsYield
With hydrogen; copper(II) oxide In neat (no solvent) byproducts: H2O; reaction in 30 min passing stream of H2 over NaNO3;;94.3%
With H2; copper(II) oxide In neat (no solvent) byproducts: H2O; reaction in 30 min passing stream of H2 over NaNO3;;94.3%
With iron addn. of NaOH;;86.4%
sodium nitrate
7631-99-4

sodium nitrate

CH(O)C6H2(CH3)(CO)ORh(P(C6H5)3)2Cl
222532-70-9

CH(O)C6H2(CH3)(CO)ORh(P(C6H5)3)2Cl

CH(O)C6H2(CH3)(CO)ORh(P(C6H5)3)2O2NO
222532-69-6

CH(O)C6H2(CH3)(CO)ORh(P(C6H5)3)2O2NO

Conditions
ConditionsYield
In dichloromethane; water; acetone stirring (0.5 h), evapn.; filtering, washing (H2O), drying (vac.);94%
sodium nitrate
7631-99-4

sodium nitrate

dichloro(2,2'-bipyridine)platinum(II)
13965-31-6

dichloro(2,2'-bipyridine)platinum(II)

N-benzylethylenediamine
4152-09-4

N-benzylethylenediamine

[Pt(bipyridine)(N-benzyl-1,2-ethanediamine)](NO3)2

[Pt(bipyridine)(N-benzyl-1,2-ethanediamine)](NO3)2

Conditions
ConditionsYield
In water addn. of ethanediamine to aq. suspn. of Pt complex, stirring 2 h at 80°C; cooling, filtration, addn. of satd. aq. NaNO3, storage at roomtemp. overnight; crystals filtered off, washed with 0.05 M HNO3, dried; elem. anal.;93.2%
sodium nitrate
7631-99-4

sodium nitrate

(2-aminoethanethiolato-N,S)bis(ethylenediamine-N,N')cobalt(III) dinitrate

(2-aminoethanethiolato-N,S)bis(ethylenediamine-N,N')cobalt(III) dinitrate

water
7732-18-5

water

silver nitrate

silver nitrate

[Ag[Co(en)2(2-aminoethanethiolato)]2](NO3)5 tetrahydrate

[Ag[Co(en)2(2-aminoethanethiolato)]2](NO3)5 tetrahydrate

Conditions
ConditionsYield
In water addn. of soln. of AgNO3 (1 equiv.) in water to aq. soln. of (Co(en)2(SCH2CH2NH2))(NO3)2 (2 equiv.); stirring at room temp. for 30 min; addn. of aq. soln. of NaNO3; cooling in a refrigerator for 2 days, crystn., filtration, elem. anal.;93%
zinc perchlorate

zinc perchlorate

sodium nitrate
7631-99-4

sodium nitrate

6,16,2,5-tribenzena(1,4)-1,4,8,11,14,18,23,27-octaazabicyclo[9.9.9]nonacosaphane
119142-71-1

6,16,2,5-tribenzena(1,4)-1,4,8,11,14,18,23,27-octaazabicyclo[9.9.9]nonacosaphane

[pCZn2(μ-ONO2)](ClO4)3

[pCZn2(μ-ONO2)](ClO4)3

Conditions
ConditionsYield
Stage #1: zinc perchlorate; sodium nitrate In methanol at 20℃; for 0.5h;
Stage #2: 6,16,2,5-tribenzena(1,4)-1,4,8,11,14,18,23,27-octaazabicyclo[9.9.9]nonacosaphane In methanol at 20℃; for 12h;
93%

7631-99-4Relevant articles and documents

Lanthanide complexes with phosphine oxide and phosphonate ligands

Petrova,Haupt,Momchilova,Zdravkova

, p. 1641 - 1654 (1999)

-

Acid-base reactions in fused mercuric chloride

Guenther, Klaus F.

, p. 295 - 296 (1964)

-

The state of ruthenium in nitrite-nitrate nitric acid solutions as probed by NMR

Emel'yanov,Fedotov

, p. 1811 - 1819 (2006)

The state of ruthenium in nitric acid solutions treated with sodium nitrite has been studied by 14N, 15N, 17O, and 99Ru NMR. In the acidity range 2.7-0.12 mol/L, the dominating ruthenium species are the [RuNO(NO

The effects of synthesis pH and hydrothermal treatment on the formation of zinc aluminum hydrotalcites

Kloprogge, J. Theo,Hickey, Leisel,Frost, Ray L.

, p. 4047 - 4057 (2004)

Zn/Al hydrotalcites were synthesized by coprecipitation at increasing pH from 6.0 to 14.0, followed by hydrothermal treatment at 150°C for 7 days. The materials were characterized by X-ray diffraction (XRD), STEM, inductively coupled plasma-atomic emission spectroscopy (ICP-AES), thermal analysis, infrared spectroscopy and Raman spectroscopy. The XRD analysis for the samples prepared between pH 9.0 and 12.0 showed a pattern typical of hydrotalcite, with a c-axis distance of ~22.6 A. STEM showed that the pH of preparation affected the stability of the hydrotalcite and that instability, observed at pH 9.0, favored the formation of mixed phases when treated hydrothermally. It was also shown that treatment of a stable starting material increased the crystallinity and resulted in the formation of hexagonal plate-shaped particles. ICP-AES and thermal analysis showed that the Zn/Al ratio and thermal stability increased with pH. Thermal analysis showed three major weight losses corresponding to the loss of interparticle water, interlayer water and dehydroxylation of the hydroxide layers and decarbonization of the interlayer region.

Gupta, C. M.,Saxena, R. S.

, p. 297 - 299 (1960)

The synthesis of apatites with an organophosphate and in nonaqueous media

Sternlieb, Mitchell P.,Brown, Heather M.,Schaeffer Jr., Charles D.,Yoder, Claude H.

, p. 729 - 732 (2009)

The syntheses of barium, cadmium, calcium, lead, and strontium apatites were performed in anhydrous polar organic solvents such as DMSO, anisole, pyridine, glacial acetic acid, ethanol, methanol, and DMF. Reactions took place under anhydrous conditions at

Electrochemical response of nitrite and nitric oxide on graphene oxide nanoparticles doped with Prussian blue (PB) and Fe2O3 nanoparticles

Adekunle, Abolanle S.,Lebogang, Seonyane,Gwala, Portia L.,Tsele, Tebogo P.,Olasunkanmi, Lukman O.,Esther, Fayemi O.,Boikanyo, Diseko,Mphuthi, Ntsoaki,Oyekunle, John A. O.,Ogunfowokan, Aderemi O.,Ebenso, Eno E.

, p. 27759 - 27774 (2015)

Electrocatalytic behaviour of graphene oxide (GO), iron(iii) oxide (Fe2O3) and Prussian blue (PB) nanoparticles and their nanocomposite towards nitrite (NO2-) and nitric oxide (NO) oxidation in neutral and acidic media respectively was investigated on a platinum (Pt) modified electrode. Successful synthesis of these nano materials was confirmed using microscopic and spectroscopic techniques. Successful modification of the electrode was confirmed using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The results showed that the Pt-GO-Fe2O3 and Pt-GO-PB nanocomposite modified electrodes gave a faster electron transfer process in both a 5 mM Ferri/Ferro ([Fe(CN)6]3-/4-) redox probe and 0.1 M phosphate buffer solution (PBS). The Pt-GO-Fe2O3 and Pt-GO-PB electrodes also gave an enhanced NO2- and NO oxidation current compared with bare Pt and the other electrodes studied. Electrocatalytic oxidation of the analyte occurred through a simple diffusion process but were characterized with some level of adsorption. Tafel slopes b of 468.4, 305.2 mV dec-1 (NO2-, NO); and 311.5, 277.2 mV dec-1 (NO2-, NO) were obtained for the analyte at the Pt-GO-Fe2O3 and Pt-GO-PB electrode respectively. The Pt-GO-Fe2O3 limit of detection and sensitivity in NO2- and NO are 6.60 μM (0.0084 μA μM-1) and 13.04 μM (0.0160 μA μM-1) respectively, while those of the Pt-GO-PB electrode are 16.58 μM (0.0093 μA μM-1) and 16.50 μM (0.0091 μA μM-1). The LoD compared favourably with literature reported values. Pt-GO-Fe2O3 gave a better performance to NO2- and NO electrooxidation, good resistance to electrode fouling, a higher catalytic rate constant and lower limit of detection. The adsorption equilibrium constant β and the standard free energy change ΔG0 due to adsorption are 10.29 × 103 M-1 (-22.89 kJ mol-1) and 3.26 × 103 M-1 (-20.04 kJ mol-1) for nitrite and nitric oxide respectively at the Pt-GO-Fe2O3 electrode. An interference study has also been reported. The fabricated sensors are easy to prepare, cost effective and can be applied for real sample analysis of nitrite and nitric oxide in food, water, biological and environmental samples.

Al-Zamil, Nabila,Delf, Brian W.,Gillard, R. D.

, p. 1117 - 1122 (1980)

A highly selective and simultaneous determination of ascorbic acid, uric acid and nitrite based on a novel poly-N-acetyl-l-methionine (poly-NALM) thin film

Kannan, Ayyadurai,Sivanesan, Arumugam,Kalaivani, Govindasamy,Manivel, Arumugam,Sevvel, Ranganathan

, p. 96898 - 96907 (2016/10/25)

This paper demonstrates the facile fabrication of an N-acetyl-l-methionine (NALM) polymer film on a glassy carbon electrode (GCE) by an electropolymerization technique. Atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and electrochemical techniques such as cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to characterize the modified electrode. This poly-NALM/GCE not only exhibits strong electrocatalytic activity towards the oxidation of ascorbic acid (AA), uric acid (UA) and nitrite with a shift in oxidation potential towards the less positive side, but also enhances peak current responses at physiological pH (7.2) conditions. Further, the overlapped anodic voltammetric peaks of the three analytes on a bare GC electrode were well-resolved into their independent oxidation peaks at the poly-NALM/GC modified electrode with a peak separation of 160 and 590 mV for AA-UA and UA-nitrite, respectively. Under the optimal experimental conditions, the anodic peak currents of AA, UA and nitrite increased linearly within the concentration ranges 10-1000 μM, 1-600 μM and 1-500 μM with correlation coefficients of 0.990, 0.996 and 0.994, respectively. The detection limits are 0.97, 0.34 and 0.75 μM for AA, UA and nitrite ion, respectively (S/N = 3). The modified electrode was successfully utilized to determine AA, UA and nitrite ion simultaneously in real samples such as human urine and tap water samples.

Multistep soft chemistry method for valence reduction in transition metal oxides with triangular (CdI2-type) layers

Blakely, Colin K.,Bruno, Shaun R.,Poltavets, Viktor V.

supporting information, p. 2797 - 2800 (2014/03/21)

Transition metal (M) oxides with MO2 triangular layers demonstrate a variety of physical properties depending on the metal oxidation states. In the known compounds, metal oxidation states are limited to either 3+ or mixed-valent 3+/4+. A multistep soft chemistry synthetic route for novel phases with M2+/3+O2 triangular layers is reported.