766-05-2Relevant articles and documents
A Titanium-Catalyzed Reductive α-Desulfonylation
Kern, Christoph,Selau, Jan,Streuff, Jan
supporting information, p. 6178 - 6182 (2021/03/16)
A titanium(III)-catalyzed desulfonylation gives access to functionalized alkyl nitrile building blocks from α-sulfonyl nitriles, circumventing traditional base-mediated α-alkylation conditions and strong single electron donors. The reaction tolerates numerous functional groups including free alcohols, esters, amides, and it can be applied also to the α-desulfonylation of ketones. In addition, a one-pot desulfonylative alkylation is demonstrated. Preliminary mechanistic studies indicate a catalyst-dependent mechanism involving a homolytic C?S cleavage.
Method for dehydrating primary amide into nitriles under catalysis of cobalt
-
Paragraph 0096-0098, (2021/06/21)
The invention provides a method for dehydrating primary amide into nitrile. The method comprises the following steps: mixing primary amide (II), silane, sodium triethylborohydride, aminopyridine imine tridentate nitrogen ligand cobalt complex (I) and a reaction solvent under the protection of inert gas, carrying out reacting at 60-100 DEG C for 6-24 hours, and post-treating reaction liquid to obtain a nitrile compound (III). According to the invention, an effective method for preparing nitrile compounds by cobalt-catalyzed primary amide dehydration reaction by using the novel aminopyridine imine tridentate nitrogen ligand cobalt complex catalyst is provided; and compared with existing methods, the method has the advantages of simple operation, mild reaction conditions, wide application range of reaction substrates, high selectivity, stable catalyst, high efficiency, and relatively high practical application value in synthesis.
Facile dehydration of primary amides to nitriles catalyzed by lead salts: The anionic ligand matters
Ruan, Shixiang,Ruan, Jiancheng,Chen, Xinzhi,Zhou, Shaodong
, (2020/12/09)
The synthesis of nitrile under mild conditions was achieved via dehydration of primary amide using lead salts as catalyst. The reaction processes were intensified by not only adding surfactant but also continuously removing the only by-product, water from the system. Both aliphatic and aromatic nitriles can be prepared in this manner with moderate to excellent yields. The reaction mechanisms were obtained with high-level quantum chemical calculations, and the crucial role the anionic ligand plays in the transformations were revealed.
A new reagent for efficient synthesis of nitriles from aldoximes using methoxymethyl bromide
ULUDAG, Nesimi,GIDEN, Ozge NUR
, p. 993 - 998 (2021/02/05)
This study outlines an efficient, high-yielding, and rapid method by which to access diverse nitriles from aldoximes with methoxymethyl bromide (MOM-Br) in THF. It represents the first application of MOM-Br as a deoximation reagent to synthesize nitriles. The reaction was performed at reflux to ensure excellent yield (79-96%) of the nitriles within 20-45 minutes. Furthermore, this method has been successfully applied to the synthesis of the synthesis precursor of aromatic, heteroaromatic, cyclic, and acyclic aliphatic.
A Molecular Iron-Based System for Divergent Bond Activation: Controlling the Reactivity of Aldehydes
Chatterjee, Basujit,Jena, Soumyashree,Chugh, Vishal,Weyhermüller, Thomas,Werlé, Christophe
, p. 7176 - 7185 (2021/06/30)
The direct synthesis of amides and nitriles from readily available aldehyde precursors provides access to functional groups of major synthetic utility. To date, most reliable catalytic methods have typically been optimized to supply one product exclusively. Herein, we describe an approach centered on an operationally simple iron-based system that, depending on the reaction conditions, selectively addresses either the C=O or C-H bond of aldehydes. This way, two divergent reaction pathways can be opened to furnish both products in high yields and selectivities under mild reaction conditions. The catalyst system takes advantage of iron's dual reactivity capable of acting as (1) a Lewis acid and (2) a nitrene transfer platform to govern the aldehyde building block. The present transformation offers a rare control over the selectivity on the basis of the iron system's ionic nature. This approach expands the repertoire of protocols for amide and nitrile synthesis and shows that fine adjustments of the catalyst system's molecular environment can supply control over bond activation processes, thus providing easy access to various products from primary building blocks.
Ni-Catalyzed Isomerization-Hydrocyanation Tandem Reactions: Access to Linear Nitriles from Aliphatic Internal Olefins
Gao, Jihui,Ni, Jie,Yu, Rongrong,Cheng, Gui-Juan,Fang, Xianjie
supporting information, p. 486 - 490 (2021/02/05)
A highly regioselective nickel-based catalyst system for the isomerization/hydrocyanation of aliphatic internal olefins is described. This benign tandem reaction provides facile access to a wide variety of aliphatic nitriles in good yields with excellent regioselectivities. Thanks to Lewis acid-free conditions, the protocol features board functional groups tolerance, including secondary amine and unprotected alcohol groups.
Direct C(sp3)-H Cyanation Enabled by a Highly Active Decatungstate Photocatalyst
Kim, Kunsoon,Lee, Seulchan,Hong, Soon Hyeok
supporting information, p. 5501 - 5505 (2021/07/26)
A highly efficient, direct C(sp3)-H cyanation was developed under mild photocatalytic conditions. The method enabled the direct cyanation of various C(sp3)-H substrates with excellent functional group tolerance. Notably, complex natural products and bioactive compounds were efficiently cyanated.
Iodine Promoted Conversion of Esters to Nitriles and Ketones under Metal-Free Conditions
Xiao, Jing,Guo, Fengzhe,Li, Yinfeng,Li, Fangshao,Li, Qiang,Tang, Zi-Long
, p. 2028 - 2035 (2021/02/03)
We report a novel strategy to prepare valuable nitriles and ketones through the conversion of esters under metal-free conditions. By using the I2/PCl3 system, various substrates including aliphatic and aromatic esters could react with acetonitrile and arenes to afford the desired products in good to excellent yields. This method is compatible with a number of functional groups and provides a simple and practical approach for the synthesis of nitrile compounds and aryl ketones.
Method for continuous preparation of nitriles by amides (by machine translation)
-
Paragraph 0033-0054; 0061-0066, (2020/12/15)
The method comprises the following steps: preparing a lead salt supported by a molecular sieve by a lead salt and a molecular sieve through an impregnation method; and filling a molecular sieve-loaded lead catalyst into a fixed bed reactor. The amide or amide solution is sent into a fixed bed reactor from the top of the fixed bed to be subjected to catalytic dehydration, and the obtained reaction product is led out from the bottom of the fixed bed. The reaction product is separated to obtain the crude product of the nitrile corresponding to the amide. A fixed bed continuous production process is adopted, the reaction process is simple, the production efficiency is high, the product post-treatment is simple, and industrial production is easy to realize. (by machine translation)
An Efficient Synthesis of Nitriles from Aldoximes in the Presence of Trifluoromethanesulfonic Anhydride in Mild Conditions
Uludag, N.
, p. 1640 - 1645 (2020/10/22)
Abstract: A new and convenient protocol has been proposed for the transformation of aldoximes to nitriles using trifluoromethanesulfonic anhydride and triethylamine. The proposed method allows a range of aldoximes, including aromatic, heterocyclic, aliphatic, and cycloaliphatic aldoximes, to be converted to the corresponding nitriles in good to excellent yields.