766-05-2Relevant articles and documents
A Molecular Iron-Based System for Divergent Bond Activation: Controlling the Reactivity of Aldehydes
Chatterjee, Basujit,Jena, Soumyashree,Chugh, Vishal,Weyhermüller, Thomas,Werlé, Christophe
, p. 7176 - 7185 (2021/06/30)
The direct synthesis of amides and nitriles from readily available aldehyde precursors provides access to functional groups of major synthetic utility. To date, most reliable catalytic methods have typically been optimized to supply one product exclusively. Herein, we describe an approach centered on an operationally simple iron-based system that, depending on the reaction conditions, selectively addresses either the C=O or C-H bond of aldehydes. This way, two divergent reaction pathways can be opened to furnish both products in high yields and selectivities under mild reaction conditions. The catalyst system takes advantage of iron's dual reactivity capable of acting as (1) a Lewis acid and (2) a nitrene transfer platform to govern the aldehyde building block. The present transformation offers a rare control over the selectivity on the basis of the iron system's ionic nature. This approach expands the repertoire of protocols for amide and nitrile synthesis and shows that fine adjustments of the catalyst system's molecular environment can supply control over bond activation processes, thus providing easy access to various products from primary building blocks.
A Titanium-Catalyzed Reductive α-Desulfonylation
Kern, Christoph,Selau, Jan,Streuff, Jan
supporting information, p. 6178 - 6182 (2021/03/16)
A titanium(III)-catalyzed desulfonylation gives access to functionalized alkyl nitrile building blocks from α-sulfonyl nitriles, circumventing traditional base-mediated α-alkylation conditions and strong single electron donors. The reaction tolerates numerous functional groups including free alcohols, esters, amides, and it can be applied also to the α-desulfonylation of ketones. In addition, a one-pot desulfonylative alkylation is demonstrated. Preliminary mechanistic studies indicate a catalyst-dependent mechanism involving a homolytic C?S cleavage.
A new reagent for efficient synthesis of nitriles from aldoximes using methoxymethyl bromide
ULUDAG, Nesimi,GIDEN, Ozge NUR
, p. 993 - 998 (2021/02/05)
This study outlines an efficient, high-yielding, and rapid method by which to access diverse nitriles from aldoximes with methoxymethyl bromide (MOM-Br) in THF. It represents the first application of MOM-Br as a deoximation reagent to synthesize nitriles. The reaction was performed at reflux to ensure excellent yield (79-96%) of the nitriles within 20-45 minutes. Furthermore, this method has been successfully applied to the synthesis of the synthesis precursor of aromatic, heteroaromatic, cyclic, and acyclic aliphatic.
Method for dehydrating primary amide into nitriles under catalysis of cobalt
-
Paragraph 0096-0098, (2021/06/21)
The invention provides a method for dehydrating primary amide into nitrile. The method comprises the following steps: mixing primary amide (II), silane, sodium triethylborohydride, aminopyridine imine tridentate nitrogen ligand cobalt complex (I) and a reaction solvent under the protection of inert gas, carrying out reacting at 60-100 DEG C for 6-24 hours, and post-treating reaction liquid to obtain a nitrile compound (III). According to the invention, an effective method for preparing nitrile compounds by cobalt-catalyzed primary amide dehydration reaction by using the novel aminopyridine imine tridentate nitrogen ligand cobalt complex catalyst is provided; and compared with existing methods, the method has the advantages of simple operation, mild reaction conditions, wide application range of reaction substrates, high selectivity, stable catalyst, high efficiency, and relatively high practical application value in synthesis.
Facile dehydration of primary amides to nitriles catalyzed by lead salts: The anionic ligand matters
Ruan, Shixiang,Ruan, Jiancheng,Chen, Xinzhi,Zhou, Shaodong
, (2020/12/09)
The synthesis of nitrile under mild conditions was achieved via dehydration of primary amide using lead salts as catalyst. The reaction processes were intensified by not only adding surfactant but also continuously removing the only by-product, water from the system. Both aliphatic and aromatic nitriles can be prepared in this manner with moderate to excellent yields. The reaction mechanisms were obtained with high-level quantum chemical calculations, and the crucial role the anionic ligand plays in the transformations were revealed.
Direct C(sp3)-H Cyanation Enabled by a Highly Active Decatungstate Photocatalyst
Kim, Kunsoon,Lee, Seulchan,Hong, Soon Hyeok
supporting information, p. 5501 - 5505 (2021/07/26)
A highly efficient, direct C(sp3)-H cyanation was developed under mild photocatalytic conditions. The method enabled the direct cyanation of various C(sp3)-H substrates with excellent functional group tolerance. Notably, complex natural products and bioactive compounds were efficiently cyanated.
Iodine Promoted Conversion of Esters to Nitriles and Ketones under Metal-Free Conditions
Xiao, Jing,Guo, Fengzhe,Li, Yinfeng,Li, Fangshao,Li, Qiang,Tang, Zi-Long
, p. 2028 - 2035 (2021/02/03)
We report a novel strategy to prepare valuable nitriles and ketones through the conversion of esters under metal-free conditions. By using the I2/PCl3 system, various substrates including aliphatic and aromatic esters could react with acetonitrile and arenes to afford the desired products in good to excellent yields. This method is compatible with a number of functional groups and provides a simple and practical approach for the synthesis of nitrile compounds and aryl ketones.
Ni-Catalyzed Isomerization-Hydrocyanation Tandem Reactions: Access to Linear Nitriles from Aliphatic Internal Olefins
Gao, Jihui,Ni, Jie,Yu, Rongrong,Cheng, Gui-Juan,Fang, Xianjie
supporting information, p. 486 - 490 (2021/02/05)
A highly regioselective nickel-based catalyst system for the isomerization/hydrocyanation of aliphatic internal olefins is described. This benign tandem reaction provides facile access to a wide variety of aliphatic nitriles in good yields with excellent regioselectivities. Thanks to Lewis acid-free conditions, the protocol features board functional groups tolerance, including secondary amine and unprotected alcohol groups.
Method for continuous preparation of nitriles in a pipelined reactor (by machine translation)
-
Paragraph 0036-0054; 0059-0097, (2020/12/14)
The method comprises the following steps that a tin catalyst is coated on the inner wall of the pipeline reactor; and the method comprises the following steps: coating a tin catalyst on the inner wall of the pipeline reactor. The amide solution and the catalytic auxiliary agent are mixed and then sent to a pipeline reactor, and the amide is dehydrated to generate nitrile at the reaction pressure of 0.1 - 2.0 mpa and 100 - 200 °C reaction temperature. The resulting reaction product was separated to give the crude product of the nitrile to which the amide corresponded. In the pipeline reactor, the corresponding nitrile is continuously prepared under the action of the tin catalyst, a dehydrating agent is not needed, byproducts only are water, and three wastes are reduced. (by machine translation)
Method for catalyzing receptor-free dehydrogenation of primary amine to generate nitrile by Ru coordination compound
-
Paragraph 0034-0039; 0261-0266, (2020/09/16)
The invention discloses a method for catalyzing receptor-free dehydrogenation of primary amine to generate nitrile by a Ru coordination compound. The method comprises: adding a Ru coordination compound, an alkali, a primary amine and an organic solvent into a reaction test tube according to a mol ratio of 1:100:(100-500):1000-3000, and carrying out a stirring reaction under the condition of 80 to120 DEG C; and when gas chromatography monitors that the raw materials completely disappear, stopping the reaction, collecting the reaction solution, centrifuging the reaction solution, taking the supernatant, extracting with dichloromethane, merging the organic phases, drying, filtering, evaporating the organic solvent under reduced pressure to obtain a filtrate, and carrying out column chromatography purification on the filtrate to obtain the target product nitrile. According to the invention, the catalyst is good in activity, single in catalytic system, good in product selectivity, simple in subsequent treatment and good in system universality after the reaction is finished, has a good catalytic effect on various aryl, alkyl and heteroaryl substituted primary amines, and also has a gooddehydrogenation performance on secondary amines.