156-28-5Relevant articles and documents
Regio- and stereoselective hydroamination of alkynes using an ammonia surrogate: Synthesis of N -Silylenamines as reactive synthons
Lui, Erica K. J.,Brandt, Jason W.,Schafer, Laurel L.
, p. 4973 - 4976 (2018)
An anti-Markovnikov selective hydroamination of alkynes with N-silylamines to afford N-silylenamines is reported. The reaction is catalyzed by a bis(amidate)bis(amido)Ti(IV) catalyst and is compatible with a variety of terminal and internal alkynes. Stoichiometric mechanistic studies were also performed. This method easily affords interesting N-silylenamine synthons in good to excellent yields and the easily removable silyl protecting group enables the catalytic synthesis of primary amines.
Hydroborative reduction of amides to amines mediated by La(CH2C6H4NMe2-: O)3
Gong, Mingliang,Guo, Chenjun,Luo, Yunjie,Xie, Hongzhen,Zhang, Fangcao
, p. 779 - 791 (2022/01/22)
The deoxygenative reduction of amides to amines is a great challenge for resonance-stabilized carboxamide moieties, although this synthetic strategy is an attractive approach to access the corresponding amines. La(CH2C6H4NMe2-o)3, a simple and easily accessible lanthanide complex, was found to be highly efficient not only for secondary and tertiary amide reduction, but also for the most challenging primary reduction with pinacolborane. This protocol exhibited good tolerance for many functional groups and heteroatoms, and could be applied to gram-scale synthesis. The active species in this catalytic cycle was likely a lanthanide hydride.
Lithium compound catalyzed deoxygenative hydroboration of primary, secondary and tertiary amides
Bisai, Milan Kumar,Gour, Kritika,Das, Tamal,Vanka, Kumar,Sen, Sakya S.
supporting information, p. 2354 - 2358 (2021/03/03)
A selective and efficient route for the deoxygenative reduction of primary to tertiary amides to corresponding amines has been achieved with pinacolborane (HBpin) using simple and readily accessible 2,6-di-tert-butyl phenolate lithium·THF (1a) as a catalyst. Both experimental and DFT studies provide mechanistic insight. This journal is
Reduction of Amides to Amines with Pinacolborane Catalyzed by Heterogeneous Lanthanum Catalyst La(CH2C6H4NMe2- o)3@SBA-15
Guo, Chenjun,Zhang, Fangcao,Yu, Chong,Luo, Yunjie
supporting information, p. 13122 - 13135 (2021/08/31)
Hydroboration of amides is a useful synthetic strategy to access the corresponding amines. In this contribution, it was found that the supported lanthanum benzyl material La(CH2C6H4NMe2-o)3@SBA-15 was highly active for the hydroboration of primary, secondary, and tertiary amides to amines with pinacolborane. These reactions selectively produced target amines and showed good tolerance for functional groups such as -NO2, -halogen, and -CN, as well as heteroatoms such as S and O. This reduction procedure exhibited the recyclable and reusable property of heterogeneous catalysts and was applicable to gram-scale synthesis. The reaction mechanisms were proposed based on some control experiments and the previous literature. This is the first example of hydroborative reduction of amides to amines mediated by heterogeneous catalysts.
Phosphine-Free Manganese Catalyst Enables Selective Transfer Hydrogenation of Nitriles to Primary and Secondary Amines Using Ammonia-Borane
Sarkar, Koushik,Das, Kuhali,Kundu, Abhishek,Adhikari, Debashis,Maji, Biplab
, p. 2786 - 2794 (2021/03/03)
Herein we report the synthesis of primary and secondary amines by nitrile hydrogenation, employing a borrowing hydrogenation strategy. A class of phosphine-free manganese(I) complexes bearing sulfur side arms catalyzed the reaction under mild reaction conditions, where ammonia-borane is used as the source of hydrogen. The synthetic protocol is chemodivergent, as the final product is either primary or secondary amine, which can be controlled by changing the catalyst structure and the polarity of the reaction medium. The significant advantage of this method is that the protocol operates without externally added base or other additives as well as obviates the use of high-pressure dihydrogen gas required for other nitrile hydrogenation reactions. Utilizing this method, a wide variety of primary and symmetric and asymmetric secondary amines were synthesized in high yields. A mechanistic study involving kinetic experiments and high-level DFT computations revealed that both outer-sphere dehydrogenation and inner-sphere hydrogenation were predominantly operative in the catalytic cycle.
Hydrosilylative reduction of primary amides to primary amines catalyzed by a terminal [Ni-OH] complex
Bera, Jitendra K.,Pandey, Pragati
supporting information, p. 9204 - 9207 (2021/09/20)
A terminal [Ni-OH] complex1, supported by triflamide-functionalized NHC ligands, catalyzes the hydrosilylative reduction of a range of primary amides into primary amines in good to excellent yields under base-free conditions with key functional group tolerance. Catalyst1is also effective for the reduction of a variety of tertiary and secondary amides. In contrast to literature reports, the reactivity of1towards amide reduction follows an inverse trend,i.e., 1° amide > 3° amide > 2° amide. The reaction does not follow a usual dehydration pathway.
Cyclic (Alkyl)(amino)carbene Ligand-Promoted Nitro Deoxygenative Hydroboration with Chromium Catalysis: Scope, Mechanism, and Applications
Zhao, Lixing,Hu, Chenyang,Cong, Xuefeng,Deng, Gongda,Liu, Liu Leo,Luo, Meiming,Zeng, Xiaoming
supporting information, p. 1618 - 1629 (2021/01/25)
Transition metal catalysis that utilizes N-heterocyclic carbenes as noninnocent ligands in promoting transformations has not been well studied. We report here a cyclic (alkyl)(amino)carbene (CAAC) ligand-promoted nitro deoxygenative hydroboration with cost-effective chromium catalysis. Using 1 mol % of CAAC-Cr precatalyst, the addition of HBpin to nitro scaffolds leads to deoxygenation, allowing for the retention of various reducible functionalities and the compatibility of sensitive groups toward hydroboration, thereby providing a mild, chemoselective, and facile strategy to form anilines, as well as heteroaryl and aliphatic amine derivatives, with broad scope and particularly high turnover numbers (up to 1.8 × 106). Mechanistic studies, based on theoretical calculations, indicate that the CAAC ligand plays an important role in promoting polarity reversal of hydride of HBpin; it serves as an H-shuttle to facilitate deoxygenative hydroboration. The preparation of several commercially available pharmaceuticals by means of this strategy highlights its potential application in medicinal chemistry.
Green method for catalyzing reduction reaction of aliphatic nitro derivative
-
Paragraph 0005-0006; 0081-0084, (2021/07/31)
The invention relates to a green method for catalyzing reduction reaction of aliphatic nitro derivatives. According to the method, non-transition metal compounds, namely triethyl boron and potassium tert-butoxide, are used as a catalytic system for the first time, an aliphatic nitro derivative and pinacolborane which is low in price and easy to obtain are catalyzed to be subjected to a reduction reaction under mild conditions, and an aliphatic amine hydrochloride product is synthesized after acidification with a hydrochloric acid aqueous solution. Compared with a traditional method, the method generally has the advantages that the catalyst is cheap and easy to obtain, operation is convenient, and reaction is safe. The selective reduction reaction of the aliphatic nitro derivative catalyzed by the non-transition metal catalyst and pinacol borane is realized for the first time, and the aliphatic amine hydrochloride product is synthesized through acidification treatment of the hydrochloric acid aqueous solution, so that a practical new reaction strategy is provided for laboratory preparation or industrial production.
Silicon hydrogenation reaction method of organic boron and inorganic alkali catalysis amide (by machine translation)
-
Paragraph 0134-0140; 0170-0173, (2020/08/18)
The method is characterized in that organic boron and inorganic bases are used as catalysts, silane is used as a reducing agent, primary amide is reduced to primary amine or dehydration dinitrile, the secondary amide is reduced to a secondary amine or aldimine, and the tertiary amide is reduced to tertiary amine. The method has the advantages of simple operation, mild reaction conditions, wide substrate universality, good functional group compatibility and the like, and has the characteristics of good stability, cheap and accessible catalyst, simple and convenient operation, high practicality and the like. (by machine translation)
Generalized Chemoselective Transfer Hydrogenation/Hydrodeuteration
Wang, Yong,Cao, Xinyi,Zhao, Leyao,Pi, Chao,Ji, Jingfei,Cui, Xiuling,Wu, Yangjie
supporting information, p. 4119 - 4129 (2020/08/10)
A generalized, simple and efficient transfer hydrogenation of unsaturated bonds has been developed using HBPin and various proton reagents as hydrogen sources. The substrates, including alkenes, alkynes, aromatic heterocycles, aldehydes, ketones, imines, azo, nitro, epoxy and nitrile compounds, are all applied to this catalytic system. Various groups, which cannot survive under the Pd/C/H2 combination, are tolerated. The activity of the reactants was studied and the trends are as follows: styrene'diphenylmethanimine'benzaldehyde'azobenzene'nitrobenzene'quinoline'acetophenone'benzonitrile. Substrates bearing two or more different unsaturated bonds were also investigated and transfer hydrogenation occurred with excellent chemoselectivity. Nano-palladium catalyst in situ generated from Pd(OAc)2 and HBPin extremely improved the TH efficiency. Furthermore, chemoselective anti-Markovnikov hydrodeuteration of terminal aromatic olefins was achieved using D2O and HBPin via in situ HD generation and discrimination. (Figure presented.).