56-86-0Relevant articles and documents
Structures and antitumor activities of ten new and twenty known surfactins from the deep-sea bacterium Limimaricola sp. SCSIO 53532
Chen, Min,Chen, Rouwen,Ding, Wenping,Li, Yanqun,Tian, Xinpeng,Yin, Hao,Zhang, Si
, (2022/01/11)
Surfactins are natural biosurfactants with myriad potential applications in the areas of healthcare and environment. However, surfactins were almost exclusively produced by the bacterium Bacillus species in previous reported literatures, together with difficulty in isolating pure monomer, which resulted in making extensive effort to remove duplication and little discovery of new surfactins in recent years. In the present study, the result of Molecular Networking indicated that Limimaricola sp. SCSIO 53532 might well be a potential resource for surfacin-like compounds based on OSMAC strategy. To search for new surfactins with significant biological activity, further study was undertaken on the strain. As a result, ten new surfactins (1–10), along with twenty known surfactins (11–30), were isolated from the ethyl acetate extract of SCSIO 53532. Their chemical structures were established by detailed 1D and 2D NMR spectroscopy, HRESIMS data, secondary ion mass spectrometry (MS/MS) analysis, and chemical degradation (Marfey's method) analysis. Cytotoxic activities of twenty-seven compounds against five human tumor cell lines were tested, and five compounds showed significant antitumor activities with IC50 values less than 10 μM. Furtherly, analysis of structure–activity relationships revealed that the branch of side chain, the esterification of Glu or Asp residue, and the amino acid residue of position 7 possessed a great influence on antitumor activity.
Powerful Steroid-Based Chiral Selector for High-Throughput Enantiomeric Separation of α-Amino Acids Utilizing Ion Mobility-Mass Spectrometry
Li, Yuling,Zhou, Bowen,Wang, Keke,Zhang, Jing,Sun, Wenjian,Zhang, Li,Guo, Yinlong
, p. 13589 - 13596 (2021/10/21)
Stereospecific recognition of amino acids (AAs) plays a crucial role in chiral biomarker-based diagnosis and prognosis. Separation of AA enantiomers is a long and tedious task due to the requirement of AA derivatization prior to the chromatographic or electrophoretic steps which are also time-consuming. Here, a mass-tagged chiral selector named [d0]/[d5]-estradiol-3-benzoate-17β-chloroformate ([d0]/[d5]-17β-EBC) with high reactivity and good enantiomeric resolution in regard to AAs was developed. After a quick and easy chemical derivatization step of AAs using 17β-EBC as the single chiral selector before ion mobility-mass spectrometry analysis, good enantiomer separation was achieved for 19 chiral proteinogenic AAs in a single analytical run (~2 s). A linear calibration curve of enantiomeric excess was also established using [d0]/[d5]-17β-EBC. It was demonstrated to be capable of determining enantiomeric ratios down to 0.5% in the nanomolar range. 17β-EBC was successfully applied to investigate the absolute configuration of AAs among peptide drugs and detect trace levels of-AAs in complex biological samples. These results indicated that [d0]/[d5]-17β-EBC may contribute to entail a valuable step forward in peptide drug quality control and discovering chiral disease biomarkers.
Method for photolysis of amido bonds
-
Paragraph 0046; 0048-0049; 0114-0117, (2021/06/26)
The invention discloses a method for photo-splitting amido bonds, wherein the method is mild in reaction condition and can realize splitting of amido bonds by using illumination. The method for photo-splitting the amido bonds comprises the following steps: reacting 2,4-dinitrofluorobenzene with an amino group of a substance which contains alpha amino acid at the tail end and is shown as a structural formula I to generate a compound 1 represented by a structural formula II; and under light irradiation, carrying out amido bond cleavage reaction on the compound 1, wherein R1 is a side chain group of alpha-amino acid, and R2 is aryl, aliphatic hydrocarbon, -CH(R)-COOH or polypeptide.
In Situ Electrochemical Monitoring of Caged Compound Photochemistry: An Internal Actinometer for Substrate Release
Jarosova, Romana,Kaplan, Sam V.,Field, Thomas M.,Givens, Richard S.,Senadheera, Sanjeewa N.,Johnson, Michael A.
, p. 2776 - 2784 (2021/02/16)
Caged compounds are molecules that release a protective substrate to free a biologically active substrate upon treatment with light of sufficient energy and duration. A notable limitation of this approach is difficulty in determining the degree of photoactivation in tissues or opaque solutions because light reaching the desired location is obstructed. Here, we have addressed this issue by developing an in situ electrochemical method in which the amount of caged molecule photorelease is determined by fast-scan cyclic voltammetry (FSCV) at carbon-fiber microelectrodes. Using p-hydroxyphenyl glutamate (pHP-Glu) as our model system, we generated a linear calibration curve for oxidation of 4-hydroxyphenylacetic acid (4HPAA), the group from which the glutamate molecule leaves, up to a concentration of 1000 μM. Moreover, we are able to correct for the presence of residual pHP-Glu in solution as well as the light artifact that is produced. A corrected calibration curve was constructed by photoactivation of pHP-Glu in a 3 μL photoreaction vessel and subsequent analysis by high-performance liquid chromatography. This approach has yielded a linear relationship between 4HPAA concentration and oxidation current, allowing the determination of released glutamate independent of the amount of light reaching the chromophore. Moreover, we have successfully validated the newly developed method by in situ measurement in a whole, intact zebrafish brain. This work demonstrates for the first time the in situ electrochemical monitoring of caged compound photochemistry in brain tissue with FSCV, thus facilitating analyses of neuronal function.
Mechanically Strong Heterogeneous Catalysts via Immobilization of Powderous Catalysts to Porous Plastic Tablets
Li, Tingting,Xu, Bo
supporting information, p. 2673 - 2678 (2021/08/03)
Main observation and conclusion: We describe a practical and general protocol for immobilization of heterogeneous catalysts to mechanically robust porous ultra-high molecular weight polyethylene tablets using inter-facial Lifshitz-van der Waals Interactions. Diverse types of powderous catalysts, including Cu, Pd/C, Pd/Al2O3, Pt/C, and Rh/C have been immobilized successfully. The immobilized catalysts are mechanistically robust towards stirring in solutions, and they worked well in diverse synthetic reactions. The immobilized catalyst tablets are easy to handle and reused. Moreover, the metal leaching of immobilized catalysts was reduced significantly.
Noncovalently Functionalized Commodity Polymers as Tailor-Made Additives for Stereoselective Crystallization
Wan, Xinhua,Wang, Zhaoxu,Ye, Xichong,Zhang, Jie
supporting information, p. 20243 - 20248 (2021/08/09)
Stereoselective inhibition of the nucleation and crystal growth of one enantiomer aided by “tailor-made” polymeric additives is an efficient method to obtain enantiopure compounds. However, the conventional preparation of polymeric additives from chiral monomers are laborious and limited in structures, which impedes their rapid optimization and applicability. Herein, we report a “plug-and-play” strategy to facilitate synthesis by using commercially available achiral polymers as the platform to attach various chiral small molecules as the recognition side-chains through non-covalent interactions. A library of supramolecular polymers made up of two vinyl polymers and six small molecules were applied with seeds in the selective crystallization of seven racemates in different solvents. They showed good to excellent stereoselectivity in yielding crystals with high enantiomeric purities in conglomerates and racemic compound forming systems. This convenient, low-cost modular synthesis strategy of polymeric additives will allow for high-efficient, economical resolution of various racemates on different scales.
Leveraging Peptaibol Biosynthetic Promiscuity for Next-Generation Antiplasmodial Therapeutics
Lee, Jin Woo,Collins, Jennifer E.,Wendt, Karen L.,Chakrabarti, Debopam,Cichewicz, Robert H.
supporting information, p. 503 - 517 (2021/03/01)
Malaria remains a worldwide threat, afflicting over 200 million people each year. The emergence of drug resistance against existing therapeutics threatens to destabilize global efforts aimed at controlling Plasmodium spp. parasites, which is expected to leave vast portions of humanity unprotected against the disease. To address this need, systematic testing of a fungal natural product extract library assembled through the University of Oklahoma Citizen Science Soil Collection Program has generated an initial set of bioactive extracts that exhibit potent antiplasmodial activity (EC50 25 μM, selectivity index > 250). The unique chemodiversity afforded by these fungal isolates serves to unlock new opportunities for translating peptaibols into a bioactive scaffold worthy of further development.
Isolation, Structure Determination, and Total Synthesis of Hoshinoamide C, an Antiparasitic Lipopeptide from the Marine Cyanobacterium Caldora penicillata
Iwasaki, Arihiro,Ohtomo, Keisuke,Kurisawa, Naoaki,Shiota, Ikuma,Rahmawati, Yulia,Jeelani, Ghulam,Nozaki, Tomoyoshi,Suenaga, Kiyotake
, p. 126 - 135 (2021/01/13)
Hoshinoamide C (1), an antiparasitic lipopeptide, was isolated from the marine cyanobacterium Caldora penicillata. Its planar structure was elucidated by spectral analyses, mainly 2D NMR, and the absolute configurations of the α-amino acid moieties were determined by degradation reactions followed by chiral-phase HPLC analyses. To clarify the absolute configuration of an unusual amino acid moiety, we synthesized two possible diastereomers of hoshinoamide C and determined its absolute configuration based on a comparison of their spectroscopic data with those of the natural compound. Hoshinoamide C (1) did not exhibit any cytotoxicity against HeLa or HL60 cells at 10 μM, but inhibited the growth of the parasites responsible for malaria (IC50 0.96 μM) and African sleeping sickness (IC50 2.9 μM).
Unique polyhalogenated peptides from the marine sponge Ircinia sp.
Fernández, Rogelio,Bayu, Asep,Hadi, Tri Aryono,Bueno, Santiago,Pérez, Marta,Cuevas, Carmen,Putra, Masteria Yunovilsa
, (2020/08/28)
Two new bromopyrrole peptides, haloirciniamide A (1) and seribunamide A (2), have been isolated from an Indonesian marine sponge of the genus Ircinia collected in the Thousand Islands (Indonesia). The planar structure of both compounds was assigned on the basis of extensive 1D and 2D NMR spectroscopy and mass spectrometry. The absolute configuration of the amino acid residues in 1 and 2 was determined by the application of Marfey's method. Compound 1 is the first dibromopyrrole cyclopeptide having a chlorohistidine ring, while compound 2 is a rare peptide possessing a tribromopyrrole ring. Both compounds failed to show significant cytotoxicity against four human tumor cell lines, and neither compound was able to inhibit the enzyme topoisomerase I or impair the interaction between programmed cell death protein PD1 and its ligand, PDL1.
The visible-light-driven transfer hydrogenation of nicotinamide cofactors with a robust ruthenium complex photocatalyst
Chen, Fushan,Deng, Li,Dong, Wenjin,Tang, Jie,Xian, Mo,Zhao, Lijun
, p. 2279 - 2287 (2020/04/20)
The highly efficient regeneration of nicotinamide cofactors has been successfully achieved with a quantum yield (Φ) of 7.9 × 10-3via photocatalytic transfer hydrogenation in the presence of the ruthenium complex Ru(tpy)(biq)Cl2 (where tpy = 2,2′:6′,2′′-terpyridine and biq = 2,2′-bisquinoline). The photocatalytic system is not only highly efficient but also tolerant to amino acid residues. The combination of this photocatalyst with glutamate dehydrogenase enabled the controllable and efficient synthesis of l-glutamate to be realized. A mechanism involving light-induced ligand exchange, decarboxylation and hydride transfer has been proposed. Kinetic isotope experiments revealed that the decarboxylation of [Ru(tpy)(biq)HCOO]+ to [Ru(tpy)(biq)H]+ was the rate-determining step with a small apparent activation energy of 3.2 ± 0.4 kcal mol-1. The hydricity of [Ru(tpy)(biq)H]+ was estimated, via reaction equilibrium, to be 40 ± 3 kcal mol-1