5728-52-9Relevant articles and documents
Robust, efficient, and recyclable catalysts from the impregnation of preformed dendrimers containing palladium nanoparticles on a magnetic support
Deraedt, Christophe,Wang, Dong,Salmon, Lionel,Etienne, Laetitia,Labrug?¤re, Christine,Ruiz, Jaime,Astruc, Didier
, p. 303 - 308 (2015)
The simple impregnation of ?3-Fe2O3(core)/SiO2(shell) magnetic nanoparticles with a dendrimer that contains stabilized Pd nanoparticles is presented as a new method to produce highly efficient heterogeneous catalysts. This technique provides much better stability, recyclability, and activity in C-C cross-coupling reactions and selective oxidation of benzyl alcohol to benzaldehyde in water than unsupported Pd nanoparticles.
A Study of Heterogeneous Catalysis by Nanoparticle-Embedded Paper-Spray Ionization Mass Spectrometry
Banerjee, Shibdas,Basheer, Chanbasha,Zare, Richard N.
, p. 12807 - 12811 (2016)
We have developed nanoparticle-embedded paper-spray mass spectrometry for studying three types of heterogeneously catalyzed reactions: 1) Palladium-nanoparticle-catalyzed Suzuki cross-coupling reactions, 2) palladium- or silver-nanoparticle-catalyzed 4-nitrophenol reduction, and 3) gold-nanoparticle-catalyzed glucose oxidation. These reactions were almost instantaneous on the nanocatalyst-embedded paper, which subsequently transferred the transient intermediates and products to a mass spectrometer for their detection. This in situ method of capturing transient intermediates and products from heterogeneous catalysis is highly promising for investigating the mechanism of catalysis and rapidly screening catalytic activity under ambient conditions.
Suzuki-Miyaura cross coupling is not an informative reaction to demonstrate the performance of new solvents
Sherwood, James
, p. 1001 - 1005 (2020)
The development and study of new solvents has become important due to a proliferation of regulations preventing or limiting the use of many conventional solvents. In this work, the suitability of the Suzuki-Miyaura reaction to demonstrate the usefulness of new solvents was evaluated, including CyreneTM, dimethyl isosorbide, ethyl lactate, 2-methyltetrahydrofuran (2-MeTHF), propylene carbonate, and γ-valerolactone (GVL). It was found that the cross coupling is often unaffected by the choice of solvent, and therefore the Suzuki-Miyaura reaction provides limited information regarding the usefulness of any particular solvent for organic synthesis.
Copper-Catalyzed Ullmann-Type Coupling and Decarboxylation Cascade of Arylhalides with Malonates to Access α-Aryl Esters
Chen, Fen-Er,Chen, Tao,Cheng, Fei,Huang, Yin-Qiu,Li, Jia-Wei,Xiao, Xiao,Zhou, Chen
, (2022/01/04)
We have developed a high-efficiency and practical Cu-catalyzed cross-coupling to directly construct versatile α-aryl-esters by utilizing readily available aryl bromides (or chlorides) and malonates. These gram-scale approaches occur with turnovers of up to 1560 and are smoothly conducted by the usage of a low catalyst loading, a new available ligand, and a green solvent. A variety of functional groups are tolerated, and the application occurs with α-aryl-esters to access nonsteroidal anti-inflammatory drugs (NSAIDs) on the gram scale.
Visible-Light-Enabled Carboxylation of Benzyl Alcohol Derivatives with CO2 Using a Palladium/Iridium Dual Catalyst
Iwasawa, Nobuharu,Jin, Yushu,Toriumi, Naoyuki
, (2021/12/14)
A highly efficient carboxylation of benzyl alcohol derivatives with CO2 using a palladium/iridium dual catalyst under visible-light irradiation was developed. A wide range of benzyl alcohol derivatives could be employed to provide benzylic carboxylic acids in moderate to high yields. Mechanistic studies indicated that the oxidative addition of benzyl alcohol derivatives was possibly the rate-determining-step. It was also found that a switchable site-selective carboxylation between benzylic C?O and aryl C?Cl moieties could be achieved simply by changing the palladium catalyst.
Desulfonylative Electrocarboxylation with Carbon Dioxide
Zhong, Jun-Song,Yang, Zi-Xin,Ding, Cheng-Lin,Huang, Ya-Feng,Zhao, Yi,Yan, Hong,Ye, Ke-Yin
supporting information, p. 16162 - 16170 (2021/09/02)
Electrocarboxylation of organic halides is one of the most investigated electrochemical approaches for converting thermodynamically inert carbon dioxide (CO2) into value-added carboxylic acids. By converting organic halides into their sulfone derivatives, we have developed a highly efficient electrochemical desulfonylative carboxylation protocol. Such a strategy takes advantage of CO2as the abundant C1 building block for the facile preparation of multifunctionalized carboxylic acids, including the nonsteroidal anti-inflammatory drug ibuprofen, under mild reaction conditions.
Controlling Multiple Active Sites on Pd?CeO2 for Sequential C?C Cross-coupling and Alcohol Oxidation in One Reaction System
Antink, Wytse Hooch,Bok, Jinsol,Cho, Sung-Pyo,Choi, Hyunwoo,Hyeon, Taeghwan,Jung, Yoon,Kim, Do Heui,Kim, Jiheon,Kim, Jongchan,Kim, Ju Hee,Kim, Sumin,Kim, Young Gyu,Ko, Wonjae,Kwak, Minjoon,Lee, Byoung-Hoon,Lee, Chan Woo,Lee, Eunwon,Lee, Kug-Seung,Lee, Seong Chan,Yim, Guk Hee,Yoo, Dongwon
, (2022/01/22)
Ceria (CeO2)-supported metal catalysts have been widely utilized for various single-step chemical transformations. However, using such catalysts for a multistep organic reaction in one reaction system has rarely been achieved. Here, we investigate multiple active sites on Pd?CeO2 catalysts and optimize them for a multistep reaction of C?C cross-coupling and alcohol oxidation. Atomic-level imaging and spectroscopic studies reveal that metallic Pd0 and Pd?CeO2 interface are active sites on Pd?CeO2 for C?C cross-coupling and oxidation, respectively. These active sites are controlled under the structural evolution of Pd?CeO2 during reductive heat-treatments. Accordingly, we found that optimally reduced Pd?CeO2 catalysts containing ~1.5 nm-sized Pd nanoclusters with both sites in balance are ideal for multistep chemical transformations in one reaction system. Our strategy to design supported metal catalysts leads to one-pot sequential synthetic protocols for pharmaceutical building blocks.
Visible-light photoredox-catalyzed selective carboxylation of C(sp3)?F bonds with CO2
Bo, Zhi-Yu,Chen, Lin,Gao, Tian-Yu,Jing, Ke,Lan, Yu,Liu, Shi-Han,Luo, Shu-Ping,Yan, Si-Shun,Yu, Bo,Yu, Da-Gang
supporting information, p. 3099 - 3113 (2021/11/16)
It is highly attractive and challenging to utilize carbon dioxide (CO2), because of its inertness, as a nontoxic and sustainable C1 source in the synthesis of valuable compounds. Here, we report a novel selective carboxylation of C(sp3)?F bonds with CO2 via visible-light photoredox catalysis. A variety of mono-, di-, and trifluoroalkylarenes as well as α,α-difluorocarboxylic esters and amides undergo such reactions to give important aryl acetic acids and α-fluorocarboxylic acids, including several drugs and analogs, under mild conditions. Notably, mechanistic studies and DFT calculations demonstrate the dual role of CO2 as an electron carrier and electrophile during this transformation. The fluorinated substrates would undergo single-electron reduction by electron-rich CO2 radical anions, which are generated in situ from CO2 via sequential hydride-transfer reduction and hydrogen-atom-transfer processes. We anticipate our finding to be a starting point for more challenging CO2 utilization with inert substrates, including lignin and other biomass.
Divergent Synthesis of α-Fluorinated Carbonyl and Carboxyl Derivatives by Double Electrophilic Activation of Amides
Dubart, Amaury,Evano, Gwilherm
, p. 8931 - 8936 (2021/11/17)
A straightforward and divergent entry to α-fluorinated carbonyl and carboxyl derivatives is reported. Upon activation of amides with triflic anhydride and a 2-halo-pyridine and subsequent trapping of the resulting keteniminium ions with nucleophiles followed by a second electrophilic activation with NFSI and final hydrolysis, a range of amides can be transformed to α-fluorinated ketones, esters, and amides under mild conditions. Moreover, this reaction can be performed to yield enantioenriched products with a traceless chiral auxiliary.
Cobalt-catalyzed cross-coupling reactions of aryl- And alkylaluminum derivatives with (hetero)aryl and alkyl bromides
Dilauro, Giuseppe,Messa, Francesco,Bona, Fabio,Perrone, Serena,Salomone, Antonio
supporting information, p. 10564 - 10567 (2021/10/19)
A simple cobalt complex, such as Co(phen)Cl2, turned out to be a highly efficient and cheap precatalyst for a host of cross-coupling reactions involving aromatic and aliphatic organoaluminum reagents with aryl, heteroaryl and alkyl bromides. New C(sp2)-C(sp2) and C(sp2)-C(sp3) bonds were formed in good to excellent yields and with high chemoselectivity, under mild reaction conditions.