107-03-9Relevant articles and documents
Catalytic synthesis of dialkyl sulfides from dialkyl disulfides
Mashkina,Khairulina
, p. 402 - 408 (2017)
Dialkyl disulfides R2S2 where R = Me, Et, or Pr, both as individual compounds and as their mixtures, isolated from petroleum products can turn into alkanethiols and dialkyl sulfides under the action of catalysts having strong acid sites and medium-strength basic sites on their surface. In a helium atmosphere, the main conversion products are alkanethiols, while dialkyl sulfides form in low yield at a selectivity of no higher than 20%. A much higher dialkyl sulfide selectivity is attained in the reaction involving methanol. The most efficient catalyst for this reaction is alumina, with which the dialkyl sulfide selectivity is up to 99%.
Synthesis and antifungal activities of alkyl N-(1,2,3-thiadiazole-4-carbonyl) carbamates and S-alkyl N-(1,2,3-thiadiazole-4-carbonyl) carbamothioates
Li, Zaifeng,Wu, Zengru,Luo, Fuying
, p. 3872 - 3876 (2005)
A series of alkyl N-(1,2,3-thiadiazole-4-carbonyl) carbamates and S-alkyl N-(1,2,3-thiadiazole-4-carbonyl) carbamothioates with unsubstituted or monobrominated straight chain alkyl groups were synthesized and evaluated as fungistatic agents against Gibberella zeae and Altemaria kikuchiana. These compounds showed variable antifungal activities at concentrations of 5 and 50 μg/mL The results showed that antifungal activities depended on the length of the alkyl chain with the optimal chain length of 6-11 carbons. Carbamic acid, (1,2,3-thiadiazole-4-ylcarbonyl)-, hexyl ester (4) showed a strong fungistatic activity against A. kikuchiana at both concentrations, with 90.7 and 54% growth inhibition at 50 and 5 μg/mL, respectively. Carbamic acid, (1,2,3-thiadiazole-4-ylcarbonyl)-, heptyl ester (5); Carbamic acid, (1,2,3-thiadiazole-4-ylcarbonyl)-, octyl ester (6); and Carbamic acid, (1,2,3-thiadiazole-4-ylcarbonyl)-, undecyl ester (9) showed strong fungistatic activity against G. zeae at both concentrations. Their growth inhibitions against G. zeae at the concentration of 5 μg/mL were 78, 63, and 59%, respectively.
New ways of synthesis of 1,2-dithiole-3-thione
Korchevin,Russavskaya,Yakimova,Deryagina
, p. 1754 - 1756 (2004)
Two new synthetic approaches to 1,2-dithiole-3-thione are proposed. The title compound is formed by thermolysis of dipropyl polysulfides (n-Pr) 2Sx (x = 3-4) and thermal decomposition of polysulfide dendrimers under reduced pressure. The latter reaction may be recommended for utilization of organochlorine waste products in the manufacture of epichlorohydrin, which are used for the synthesis of dendrimers. 2004 MAIK "Nauka/Interperiodica".
A new procedure for thioester deprotection using thioglycolic acid in both homogeneous and heterogeneous phase
Mahler, Graciela,Saiz, Cecilia,Villamil, Valentina
, (2021/07/20)
Classic acetyl thioester protection/deprotection methodologies are widely used in organic synthesis, but deprotection step usually requires harsh conditions not suitable for labile substrates. In this work, a new method for thioester deprotection using a thiotransesterification approach is described. Firstly, thioglycolic acid (TGA) was identified as a good deprotecting reagent in solution. In order to develop a thiol polymer-supported reagent, TGA was anchored to a PEG-based resin through an amide bond (TG-NCO-SH). Both homogeneous and heterogeneous approaches were conveniently carried out at room temperature, in aqueous buffer at pH 8. The mild conditions were suitable for alkyl and phenyl thioesters. Moreover labile thioesters containing thiazolidine and oxazolidine scaffolds, bearing amine, ester and acetal functionalities were also deprotected. The polymer-supported TGA gave better deprotection yields compared to TGA in solution, yields ranging from 61 to 90%. The feasibility of the recovery and reuse of TG-NCO-SH reagent was explored, showing it can be reused at least five times without lossing the activity.
Phosphorus Pentasulfide Mediated Conversion of Primary Carbamates into Thiols
Maurya, Chandra Kant,Gupta, Pradeep Kumar
, p. 1649 - 1651 (2017/08/11)
In this paper, we report a method for the conversion of primary carbamates into thiols in the presence of phosphorus pentasulfide (P 2 S 5) in refluxing toluene. Presently, no method exists in the literature for conversion of carbamates into thiols and, to the best of our knowledge, it is the first report for this type of conversion. This method presents an indirect route for the conversion of alcohols into thiols via their carbamate derivatives that may be useful in the total synthesis of compounds containing a thiol functionality.
Quantitative Reactivity Scales for Dynamic Covalent and Systems Chemistry
Zhou, Yuntao,Li, Lijie,Ye, Hebo,Zhang, Ling,You, Lei
supporting information, p. 381 - 389 (2016/01/26)
Dynamic covalent chemistry (DCC) has become a powerful tool for the creation of molecular assemblies and complex systems in chemistry and materials science. Herein we developed for the first time quantitative reactivity scales capable of correlation and prediction of the equilibrium of dynamic covalent reactions (DCRs). The reference reactions are based upon universal DCRs between imines, one of the most utilized structural motifs in DCC, and a series of O-, N-, and S- mononucleophiles. Aromatic imines derived from pyridine-2-carboxyaldehyde exhibit capability for controlling the equilibrium through distinct substituent effects. Electron-donating groups (EDGs) stabilize the imine through quinoidal resonance, while electron-withdrawing groups (EWGs) stabilize the adduct by enhancing intramolecular hydrogen bonding, resulting in curvature in Hammett analysis. Notably, unique nonlinearity induced by both EDGs and EWGs emerged in Hammett plot when cyclic secondary amines were used. This is the first time such a behavior is observed in a thermodynamically controlled system, to the best of our knowledge. Unified quantitative reactivity scales were proposed for DCC and defined by the correlation log K = SN (RN + RE). Nucleophilicity parameters (RN and SN) and electrophilicity parameters (RE) were then developed from DCRs discovered. Furthermore, the predictive power of those parameters was verified by successful correlation of other DCRs, validating our reactivity scales as a general and useful tool for the evaluation and modeling of DCRs. The reactivity parameters proposed here should be complementary to well-established kinetics based parameters and find applications in many aspects, such as DCR discovery, bioconjugation, and catalysis.
Two-step three-component process for one-pot synthesis of 8-alkylmercaptocaffeine derivatives
Rad, M. N. Soltani,Maghsoudi
, p. 70335 - 70342 (2016/08/06)
A highly efficient, odourless and two-step three-component process for one-pot synthesis of some 8-alkylmercaptocaffeine derivatives has been described. The catalyst-free three-component reaction of alkyl bromides, thiourea, and 8-bromocaffeine gave 8-alkylmercaptocaffeine products in excellent to quantitative yields. In addition, the impact of parameters on sample reaction is discussed.
A process for the preparation of isoflavones propanethiol
-
Paragraph 0052; 0053, (2017/04/03)
The invention discloses a method for synthesizing isopropyl mercaptan from propylene and hydrogen sulfide. According to the method, a heat insulation type fixed bed reactor is used and isopropyl mercaptan is synthesized of hydrogen sulfide and propylene in the presence of a solid acid catalyst according to a continuous production process. The method disclosed by the invention has the advantages that the reaction conditions are easy to control, the yield is high, the process is simple, and the environmental pollution is reduced.
Interrogation of the Substrate Profile and Catalytic Properties of the Phosphotriesterase from Sphingobium sp. Strain TCM1: An Enzyme Capable of Hydrolyzing Organophosphate Flame Retardants and Plasticizers
Xiang, Dao Feng,Bigley, Andrew N.,Ren, Zhongjie,Xue, Haoran,Hull, Kenneth G.,Romo, Daniel,Raushel, Frank M.
, p. 7539 - 7549 (2016/01/09)
The most familiar organophosphorus compounds are the neurotoxic insecticides and nerve agents. A related group of organophosphorus compounds, the phosphotriester plasticizers and flame retardants, has recently become widely used. Unlike the neurotoxic phosphotriesters, the plasticizers and flame retardants lack an easily hydrolyzable bond. While the hydrolysis of the neurotoxic organophosphates by phosphotriesterase enzymes is well-known, the lack of a labile bond in the flame retardants and plasticizers renders them inert to typical phosphotriesterases. A phosphotriesterase from Sphingobium sp. strain TCM1 (Sb-PTE) has recently been reported to catalyze the hydrolysis of organophosphorus flame retardants. This enzyme has now been expressed in Escherichia coli, and the activity with a wide variety of organophosphorus substrates has been characterized and compared to the activity of the well-known phosphotriesterase from Pseudomonas diminuta (Pd-PTE). Structure prediction suggests that Sb-PTE has a β-propeller fold, and homology modeling has identified a potential mononuclear manganese binding site. Sb-PTE exhibits catalytic activity against typical phosphotriesterase substrates such as paraoxon, but unlike Pd-PTE, Sb-PTE is also able to effectively hydrolyze flame retardants, plasticizers, and industrial solvents. Sb-PTE can hydrolyze both phosphorus-oxygen bonds and phosphorus-sulfur bonds, but not phosphorus-nitrogen bonds. The best substrate for Sb-PTE is the flame retardant triphenyl phosphate with a kcat/Km of 1.7 × 106 M-1 s-1. Quite remarkably, Sb-PTE is also able to hydrolyze phosphotriesters with simple alcohol leaving groups such as tributyl phosphate (kcat/Km = 40 M-1 s-1), suggesting that this enzyme could be useful for the bioremediation of a wide variety of organophosphorus compounds.
The Ever-surprising chemistry of boron: Enhanced acidity of phosphine·boranes
Hurtado, Marcela,Yanez, Manuel,Herrero, Rebeca,Guerrero, Andres,Juan Z. Davalos,Jose-Luis, M. Abboud,Khater, Brahim,Guillemin, Jean-Claude
supporting information; experimental part, p. 4622 - 4629 (2009/12/29)
The gas-phase acidity of a series of phosphines and their corresponding phosphine·borane derivatives was measured by FT-ICR techniques. BH 3 attachment leads to a substantial increase of the intrinsic acidity of the system (from 80 to 110 kJ mol-1). This acidity-enhancing effect of BH3 is enormous, between 13 and 18 orders of magnitude in terms of ionization constants. This indicates that the enhancement of the acidity of protic acids by Lewis acids usually observed in solution also occurs in the gas phase. High- level DFT calculations reveal that this acidity enhancement is essentially due to stronger stabilization of the anion with respect to the neutral species on BH3 association, due to a stronger electron donor ability of P in the anion and better dispersion of the negative charge in the system when the BH3 group is present. Our study also shows that deprotonation of ClCH2PH2 and ClCH 2PH2·BH3 is followed by chloride departure. For the latter compound deprotonation at the BH3 group is found to be more favorable than PH2 deprotonation, and the subsequent loss of Cl- is kinetically favored with respect to loss of Cl - in a typical SN2 process. Hence, ClCH2PH 2·BH3 is the only phosphine·borane adduct included in this study which behaves as a boron acid rather than as a phosphorus acid.