88-65-3Relevant articles and documents
One-Pot Direct Oxidation of Primary Amines to Carboxylic Acids through Tandem ortho-Naphthoquinone-Catalyzed and TBHP-Promoted Oxidation Sequence
Kim, Hun Young,Oh, Kyungsoo,Si, Tengda
, p. 18150 - 18155 (2021/12/09)
Biomimetic oxidation of primary amines to carboxylic acids has been developed where the copper-containing amine oxidase (CuAO)-like o-NQ-catalyzed aerobic oxidation was combined with the aldehyde dehydrogenase (ALDH)-like TBHP-mediated imine oxidation protocol. Notably, the current tandem oxidation strategy provides a new mechanistic insight into the imine intermediate and the seemingly simple TBHP-mediated oxidation pathways of imines. The developed metal-free amine oxidation protocol allows the use of molecular oxygen and TBHP, safe forms of oxidant that may appeal to the industrial application.
Photoinduced FeCl3-Catalyzed Alkyl Aromatics Oxidation toward Degradation of Polystyrene at Room Temperature?
Zhang, Guoxiang,Zhang, Zongnan,Zeng, Rong
supporting information, p. 3225 - 3230 (2021/09/28)
While polystyrene is widely used in daily life as a synthetic plastic, the subsequently selective degradation is still very challenging and highly required. Herein, we disclose a highly practical and selective reaction for the catalytically efficient oxidation of alkyl aromatics (including 1°, 2°, and 3° alkyl aromatics) to carboxylic acids. While dioxygen was used as the sole terminal oxidant, this protocol was catalyzed by the inexpensive and readily available ferric compound (FeCl3) with irradiation of visible light (blue LEDs) under only 1 atmosphere of O2 at room temperature. This system could further facilitate the selective degradation of polystyrene to benzoic acid, providing an important and practical tool to generate high-value chemical from abundant polystyrene wastes.
Acetyl nitrate mediated conversion of methyl ketones to diverse carboxylic acid derivatives
Bernard, Josephine,Capilato, Joseph N.,Hoy, Erik P.,Mattiucci, Joseph,Pellegrinelli, Peter J.,Perez, Lark J.,Philippi, Shane,Schnorbus, Logan
supporting information, p. 5298 - 5302 (2021/06/30)
The development of a novel acetyl nitrate mediated oxidative conversion of methyl ketones to carboxylic acid derivatives is described. By analogy to the haloform reaction and supported by experimental and computational investigation we propose a mechanism for this transformation.
Efficiency of lithium cations in hydrolysis reactions of esters in aqueous tetrahydrofuran
Harada, Yumi,Hayashi, Kazuhiko,Ichimaru, Yoshimi,Imai, Masanori,Kojima, Yuki,Maeda, Azusa,Nakayama, Kanae,Sugiura, Kirara
, p. 581 - 594 (2021/06/06)
Lithium cations were observed to accelerate the hydrolysis of esters with hydroxides (KOH, NaOH, LiOH) in a water/tetrahydrofuran (THF) two-phase system. Yields in the hydrolysis of substituted benzoates and aliphatic esters using the various hydroxides were compared, and the effects of the addition of lithium salt were examined. Moreover, it was presumed that a certain amount of LiOH was dissolved in THF by the coordination of THF with lithium cation and hydrolyzed esters even in the THF layer, as in the reaction by a phase-transfer catalyst.
Cleavage of Carboxylic Esters by Aluminum and Iodine
Sang, Dayong,Yue, Huaxin,Fu, Yang,Tian, Juan
, p. 4254 - 4261 (2021/03/09)
A one-pot procedure for deprotecting carboxylic esters under nonhydrolytic conditions is described. Typical alkyl carboxylates are readily deblocked to the carboxylic acids by the action of aluminum powder and iodine in anhydrous acetonitrile. Cleavage of lactones affords the corresponding ω-iodoalkylcarboxylic acids. Aryl acetylates undergo deacetylation with the participation of the neighboring group. This method enables the selective cleavage of alkyl carboxylic esters in the presence of aryl esters.
Selective oxidation of alkenes to carbonyls under mild conditions
Huo, Jie,Xiong, Daokai,Xu, Jun,Yue, Xiaoguang,Zhang, Pengfei,Zhang, Yilan
supporting information, p. 5549 - 5555 (2021/08/16)
Herein, a practical and sustainable method for the synthesis of aldehydes, ketones, and carboxylic acids from an inexpensive olefinic feedstock is described. This transformation features very sustainable and mild conditions and utilizes commercially available and inexpensive tetrahydrofuran as the additive, molecular oxygen as the sole oxidant and water as the solvent. A wide range of substituted alkenes were found to be compatible, providing the corresponding carbonyl compounds in moderate-to-good yields. The control experiments demonstrated that a radical mechanism is responsible for the oxidation reaction.
Combining photoredox catalysis and oxoammonium cations for the oxidation of aromatic alcohols to carboxylic acids
Nandi, Jyoti,Hutcheson, Ellen L.,Leadbeater, Nicholas E.
supporting information, (2020/12/25)
A methodology is reported for converting alcohols to the corresponding carboxylic acids. A dual catalytic system involving a merger of photoredox catalysis and 4-acetamido-TEMPO is employed to carry out this oxidation process.
Aerobic oxidation of aldehydes to carboxylic acids catalyzed by recyclable ag/c3 n4 catalyst
Wu, Chaolong,Yao, Xiaoquan,Yu, Min,Zhou, Li,Zhu, Li
, p. 167 - 175 (2021/03/19)
The oxidation of aldehydes is an efficient methodology for the synthesis of carboxylic acids. Herein we hope to report a simple, efficient and recyclable protocol for aerobic oxidation of aldehydes to carboxylic acid by using C3N4 supported silver nanoparticles (Ag/C3N4) as a catalyst in aqueous solution under mild conditions. Under standard conditions, the corresponding carboxylic acids can be obtained in good to excellent yields. In addition, Ag/C3N4 is convenient for recovery and could be reused three times with satisfactory yields.
Catalytic C-H aerobic and oxidant-induced oxidation of alkylbenzenes (including toluene derivatives) over VO2+immobilized on core-shell Fe3O4?SiO2at room temperature in water
Mohammadpour, Pegah,Safaei, Elham
, p. 23543 - 23553 (2020/07/14)
Direct C-H bond oxidation of organic materials, and producing the necessary oxygenated compounds under mild conditions, has attracted increasing interest. The selective oxidation of various alkylbenzenes was carried out by means of a new catalyst containing VO2+ species supported on silica-coated Fe3O4 nanoparticles using t-butyl hydroperoxide as an oxidant at room temperature in H2O or solvent-free media. The chemical and structural characterization of the catalyst using several methods such as FTIR spectroscopy, XRD, FETEM, FESEM, SAED, EDX and XPS showed that VO2+ is covalently bonded to the silica surface. High selectivity and excellent conversion of various toluene derivatives, with less reactive aliphatic (sp3) C-H bonds, to related benzoic acids were quite noticeable. The aerobic oxygenation reaction of these alkylbenzenes was studied under the same conditions. All the results accompanied by sustainability of the inexpensive and simple magnetically separable heterogeneous catalyst proved the important criteria for commercial applications. This journal is
Light and oxygen-enabled sodium trifluoromethanesulfinate-mediated selective oxidation of C-H bonds
Fu, Hua,Liu, Can,Liu, Yong,Yang, Haijun,Zhu, Xianjin
supporting information, p. 4357 - 4363 (2020/07/14)
Visible light-induced organic reactions are important chemical transformations in organic chemistry, and their efficiency highly depends on suitable photocatalysts. However, the commonly used photocatalysts are precious transition-metal complexes and elaborate organic dyes, which hamper large-scale production due to high cost. Here, for the first time, we report a novel strategy: light and oxygen-enabled sodium trifluoromethanesulfinate-mediated selective oxidation of C-H bonds, allowing high-value-added aromatic ketones and carboxylic acids to be easily prepared in high-to-excellent yields using readily available alkyl arenes, methyl arenes and aldehydes as materials. The mechanistic investigations showed that the treatment of inexpensive and readily available sodium trifluoromethanesulfinate with oxygen under irradiation of light could in situ form a pentacoordinate sulfide intermediate as an efficient photosensitizer. The method represents a highly efficient, economical and environmentally friendly strategy, and the light and oxygen-enabled sodium trifluoromethanesulfinate photocatalytic system represents a breakthrough in photochemistry. This journal is