98-54-4Relevant articles and documents
Efficiency of sulfonic cation-exchange resins used in para-tert-butylphenol production: A comparison based on the kinetics of transalkylation in the phenol-tert-butylphenols system
Voronin,Nesterova,Strelchik,Zhuravskii
, p. 705 - 711 (2014)
The kinetics of transalkylation in the phenol-tert-butylphenols system in the presence of Amberlyst 36 Dry sulfonic cation-exchange resin has been investigated at 353-403 K in the tert-Bu/Ar = 0.10-0.55 mol/mol range. Kinetic characteristics of the o-tert-butylphenol + phenol ai p-tert-butylphenol + phenol (I) and 2,4-di-tert-butylphenol + phenol ai 2p-tert-butylphenol (II) reactions have been determined. The chemical equilibrium in the presence of Amberlyst 36 Dry is reached much sooner than in the presence of KU-23 10/60, a cation-exchange resin used at present. On passing from Amberlyst 36 Dry to KU-23 10/60, the preexponential factor for reaction (I) increases by a factor of 10 and that for reaction (II) increases by a factor of 2000. Thermodynamic characteristics of reaction (I) between 353 and 523 K have been calculated from experimental data and data available from the literature. The thermodynamic characteristics of reaction (II) have been determined experimentally. The enthalpy and entropy of reaction (I) are equal to those of reaction (II). The difference between the equilibrium constants of these reactions is explained. It is recommended that Amberlyst 36 Dry, which proved more efficient than KU-23 10/60, be used in the industrial production of p-tert-butylphenol.
Alkylation of Phenol with tert-Butanol in a Draining-Film Reactor
Maksimov, A. L.,Mel’chakov, I. S.,Terekhov, A. V.,Zanaveskin, L. N.
, p. 569 - 575 (2021/07/26)
The alkylation of phenol with tert-butanol in a displacement draining-film reactor on a heterogeneous catalyst, Beta zeolite, was evaluated. Optimum process conditions ensuring the maximal p-tert-butylphenol yield were determined: phenol:tert-butanol molar ratio (3–3.5):1, superficial liquid velocity 1.0–1.5 m3 m–2 h–1, and temperature 100°C–110°C. A procedure ensuring 100% conversion of tert-butanol and isobutylene (a by-product formed from tert-butanol) was observed.
Nickel-catalyzed deallylation of aryl allyl ethers with hydrosilanes
Ding, Guangni,Fan, Sijie,Wang, Jingyang,Wang, Yu,Wu, Xiaoyu,Xie, Xiaomin,Yang, Liqun,Zhang, Zhaoguo
supporting information, (2021/09/28)
An efficient and mild catalytic deallylation method of aryl allyl ethers is developed, with commercially available Ni(COD)2 as catalyst precursor, simple substituted bipyridine as ligand and air-stable hydrosilanes. The process is compatible with a variety of functional groups and the desired phenol products can be obtained with excellent yields and selectivity. Besides, by detection or isolation of key intermediates, mechanism studies confirm that the deallylation undergoes η3-allylnickel intermediate pathway.
Hydroperoxide method for the synthesis of p-tert-butylphenol
Frolov, A. S.,Korshunova, A. I.,Koshel’, G. N.,Kurganova, E. A.,Yarkina, E. M.
, p. 1951 - 1956 (2021/11/05)
The results of studies related to the development of a highly selective three-stage method for the synthesis of p-tert-butylphenol along with acetone are presented. The alkylation of isopropylbenzene with tert-butyl alcohol in the presence of concentrated sulfuric acid makes it possible to obtain only the para-isomer of tert-butylcumene. For the liquid-phase aerobic oxidation of p-tert-butylcumene in the presence of the phthalimide catalysts, the hydrocarbon conversion reaches 45% with a selectivity of hydroperoxide formation of 90–95%. The process of acid decomposition of p-tert-butylcumene hydroperoxide to p-tert-butylphenol and acetone was studied. Conditions providing the production of p-tert-butylphenol in a yield of 90% were found.
Increasing the steric hindrance around the catalytic core of a self-assembled imine-based non-heme iron catalyst for C-H oxidation
Frateloreto, Federico,Capocasa, Giorgio,Olivo, Giorgio,Abdel Hady, Karim,Sappino, Carla,Di Berto Mancini, Marika,Levi Mortera, Stefano,Lanzalunga, Osvaldo,Di Stefano, Stefano
, p. 537 - 542 (2021/02/09)
Sterically hindered imine-based non-heme complexes4and5rapidly self-assemble in acetonitrile at 25 °C, when the corresponding building blocks are added in solution in the proper ratios. Such complexes are investigated as catalysts for the H2O2oxidation of a series of substrates in order to ascertain the role and the importance of the ligand steric hindrance on the action of the catalytic core1, previously shown to be an efficient catalyst for aliphatic and aromatic C-H bond oxidation. The study reveals a modest dependence of the output of the oxidation reactions on the presence of bulky substituents in the backbone of the catalyst, both in terms of activity and selectivity. This result supports a previously hypothesized catalytic mechanism, which is based on the hemi-lability of the metal complex. In the active form of the catalyst, one of the pyridine arms temporarily leaves the iron centre, freeing up a lot of room for the access of the substrate.
Aromatic C?H Hydroxylation Reactions with Hydrogen Peroxide Catalyzed by Bulky Manganese Complexes
Masferrer-Rius, Eduard,Borrell, Margarida,Lutz, Martin,Costas, Miquel,Klein Gebbink, Robertus J. M.
, p. 3783 - 3795 (2021/03/09)
The oxidation of aromatic substrates to phenols with H2O2 as a benign oxidant remains an ongoing challenge in synthetic chemistry. Herein, we successfully achieved to catalyze aromatic C?H bond oxidations using a series of biologically inspired manganese catalysts in fluorinated alcohol solvents. While introduction of bulky substituents into the ligand structure of the catalyst favors aromatic C?H oxidations in alkylbenzenes, oxidation occurs at the benzylic position with ligands bearing electron-rich substituents. Therefore, the nature of the ligand is key in controlling the chemoselectivity of these Mn-catalyzed C?H oxidations. We show that introduction of bulky groups into the ligand prevents catalyst inhibition through phenolate-binding, consequently providing higher catalytic turnover numbers for phenol formation. Furthermore, employing halogenated carboxylic acids in the presence of bulky catalysts provides enhanced catalytic activities, which can be attributed to their low pKa values that reduces catalyst inhibition by phenolate protonation as well as to their electron-withdrawing character that makes the manganese oxo species a more electrophilic oxidant. Moreover, to the best of our knowledge, the new system can accomplish the oxidation of alkylbenzenes with the highest yields so far reported for homogeneous arene hydroxylation catalysts. Overall our data provide a proof-of-concept of how Mn(II)/H2O2/RCO2H oxidation systems are easily tunable by means of the solvent, carboxylic acid additive, and steric demand of the ligand. The chemo- and site-selectivity patterns of the current system, a negligible KIE, the observation of an NIH-shift, and the effectiveness of using tBuOOH as oxidant overall suggest that hydroxylation of aromatic C?H bonds proceeds through a metal-based mechanism, with no significant involvement of hydroxyl radicals, and via an arene oxide intermediate. (Figure presented.).
Catalyst-free rapid conversion of arylboronic acids to phenols under green condition
Dong, Zhenhua,Liu, Mengmeng,Pan, Hongguo
, (2021/09/06)
A catalyst-free and solvent-free method for the oxidative hydroxylation of aryl boronic acids to corresponding phenols with hydrogen peroxide as the oxidizing agent was developed. The reactions could be performed under green condition at room temperature within very short reaction time. 99% yield of phenol could be achieved in only 1 min. A series of different arenes substituted aryl boronic acids were further carried out in the hydroxylation reaction with excellent yield. It was worth nothing that the reaction could completed within 1 min in all cases in the presence of ethanol as co-solvent.
The graphite-catalyzed: ipso -functionalization of arylboronic acids in an aqueous medium: metal-free access to phenols, anilines, nitroarenes, and haloarenes
Badgoti, Ranveer Singh,Dandia, Anshu,Parewa, Vijay,Rathore, Kuldeep S.,Saini, Pratibha,Sharma, Ruchi
, p. 18040 - 18049 (2021/05/29)
An efficient, metal-free, and sustainable strategy has been described for the ipso-functionalization of phenylboronic acids using air as an oxidant in an aqueous medium. A range of carbon materials has been tested as carbocatalysts. To our surprise, graphite was found to be the best catalyst in terms of the turnover frequency. A broad range of valuable substituted aromatic compounds, i.e., phenols, anilines, nitroarenes, and haloarenes, has been prepared via the functionalization of the C-B bond into C-N, C-O, and many other C-X bonds. The vital role of the aromatic π-conjugation system of graphite in this protocol has been established and was observed via numerous analytic techniques. The heterogeneous nature of graphite facilitates the high recyclability of the carbocatalyst. This effective and easy system provides a multipurpose approach for the production of valuable substituted aromatic compounds without using any metals, ligands, bases, or harsh oxidants.
Electrochemical-induced hydroxylation of aryl halides in the presence of Et3N in water
Ke, Fang,Lin, Chen,Lin, Mei,Long, Hua,Wu, Mei,Yang, Li,Zhuang, Qinglong
supporting information, p. 6417 - 6421 (2021/08/03)
A thorough study of mild and environmentally friendly electrochemical-induced hydroxylation of aryl halides without a catalyst is presented. The best protocol consists of hydroxylation of different aryl iodides and aryl bromides by water solution in the presence of Et3N under air, affording the target phenols in good isolated yields. Moreover, aryl chlorides were successfully employed as substrates. This methodology also provides a direct pathway for the formation of deoxyphomalone, which displayed a significant anti-proliferation effect.
Substituent and Surfactant Effects on the Photochemical Reaction of Some Aryl Benzoates in Micellar Green Environment?
Siano, Gastón,Crespi, Stefano,Bonesi, Sergio M.
, p. 1298 - 1309 (2021/05/07)
In this study, we carried out preparative and mechanistic studies on the photochemical reaction of a series of p-substituted phenyl benzoates in confined and sustainable micellar environment. The aim of this work is mainly focused to show whether the nature of the surfactant (ionic or nonionic) leads to noticeable selectivity in the photoproduct formation and whether the electronic effects of the substituents affect the chemical yields and the rate of formation of the 5-substituted-2-hydroxybenzophenone derivatives. Application of the Hammett linear free energy relationship (LFER) on the rate of formation of benzophenone derivatives, on the lower energy band of the UV-visible absorption spectra of the aryl benzoates and 5-substituted-2-hydroxybenzophenone derivatives allows a satisfactory quantification of the substituent effects. Furthermore, UV-visible and 2D-NMR (NOESY) spectroscopies have been employed to measure the binding constant Kb and the location of the aryl benzoates within the hydrophobic core of the micelle. Finally, TD-DFT calculations have been carried out to estimate the energies of the absorption bands of p-substituted phenyl benzoates and 5-substituted-2-hydroxybenzophenone derivatives providing good linear correlation with those values measured experimentally.