104-12-1Relevant articles and documents
Chloride transport activities of trans- and cis-amide-linked bisureas
Park, Eun Bit,Jeong, Kyu-Sung
, p. 9197 - 9200 (2015)
Of the bisurea compounds linked through trans- and cis-benzanilide spacers, the cis-amide derivatives were found to be effective in chloride transport, using which a stimuli-responsive mobile carrier was devised. This journal is
Sulfonylureas as Concomitant Insulin Secretagogues and NLRP3 Inflammasome Inhibitors
Hill, James R.,Coll, Rebecca C.,Sue, Nancy,Reid, Janet C.,Dou, Jennifer,Holley, Caroline L.,Pelingon, Ruby,Dickinson, Joshua B.,Biden, Trevor J.,Schroder, Kate,Cooper, Matthew A.,Robertson, Avril A. B.
, p. 1449 - 1457 (2017)
Insulin-secretory sulfonylureas are widely used, cost-effective treatments for type 2 diabetes (T2D). However, pancreatic β-cells are continually depleted as T2D progresses, thereby rendering the sulfonylurea drug class ineffective in controlling glycaemia. Dysregulation of the innate immune system via activation of the NLRP3 inflammasome, and the consequent production of interleukin-1β, has been linked to pancreatic β-cell death and multiple inflammatory complications of T2D disease. One proposed strategy for treating T2D is the use of sulfonylurea insulin secretagogues that are also NLRP3 inhibitors. We report the synthesis and biological evaluation of nine sulfonylureas that inhibit NLRP3 activation in murine bone-marrow- derived macrophages in a potent, dose-dependent manner. Six of these compounds inhibited NLRP3 at nanomolar concentrations and can also stimulate insulin secretion from a murine pancreatic cell line (MIN6). These novel compounds possess unprecedented dual modes of action, paving the way for a new generation of sulfonylureas that may be useful as therapeutic candidates and/or tool compounds in T2D and its associated inflammatory complications.
Design, synthesis and structure-activity relationship study of novel urea compounds as FGFR1 inhibitors to treat metastatic triple-negative breast cancer
Akwii, Racheal,Alvina, Karina,Ashraf-Uz-Zaman, Md,Farshbaf, Mohammad Jodeiri,German, Nadezhda A.,Kallem, Raja Reddy,Mikelis, Constantinos M.,Putnam, William,Sajib, Md Sanaullah,Shahi, Sadisna,Trippier, Paul C.,Wang, Wei,Zhang, Ruiwen
, (2020/10/12)
Triple-negative breast cancer (TNBC) is an aggressive type of cancer characterized by higher metastatic and reoccurrence rates, where approximately one-third of TNBC patients suffer from the metastasis in the brain. At the same time, TNBC shows good responses to chemotherapy, a feature that fuels the search for novel compounds with therapeutic potential in this area. Recently, we have identified novel urea-based compounds with cytotoxicity against selected cell lines and with the ability to cross the blood-brain barrier in vivo. We have synthesized and analyzed a library of more than 40 compounds to elucidate the key features responsible for the observed activity. We have also identified FGFR1 as a molecular target that is affected by the presence of these compounds, confirming our data using in silico model. Overall, we envision that these compounds can be further developed for the potential treatment of metastatic breast cancer.
Supporting-Electrolyte-Free Anodic Oxidation of Oxamic Acids into Isocyanates: An Expedient Way to Access Ureas, Carbamates, and Thiocarbamates
Petti, Alessia,Fagnan, Corentin,van Melis, Carlo G. W.,Tanbouza, Nour,Garcia, Anthony D.,Mastrodonato, Andrea,Leech, Matthew C.,Goodall, Iain C. A.,Dobbs, Adrian P.,Ollevier, Thierry,Lam, Kevin
supporting information, p. 2614 - 2621 (2021/06/27)
We report a new electrochemical supporting-electrolyte-free method for synthesizing ureas, carbamates, and thiocarbamates via the oxidation of oxamic acids. This simple, practical, and phosgene-free route includes the generation of an isocyanate intermediate in situ via anodic decarboxylation of an oxamic acid in the presence of an organic base, followed by the one-pot addition of suitable nucleophiles to afford the corresponding ureas, carbamates, and thiocarbamates. This procedure is applicable to different amines, alcohols, and thiols. Furthermore, when single-pass continuous electrochemical flow conditions were used and this reaction was run in a carbon graphite Cgr/Cgr flow cell, urea compounds could be obtained in high yields within a residence time of 6 min, unlocking access to substrates that were inaccessible under batch conditions while being easily scalable.
Practical one-pot amidation of N -Alloc-, N -Boc-, and N -Cbz protected amines under mild conditions
Hong, Wan Pyo,Tran, Van Hieu,Kim, Hee-Kwon
, p. 15890 - 15895 (2021/05/19)
A facile one-pot synthesis of amides from N-Alloc-, N-Boc-, and N-Cbz-protected amines has been described. The reactions involve the use of isocyanate intermediates, which are generated in situ in the presence of 2-chloropyridine and trifluoromethanesulfonyl anhydride, to react with Grignard reagents to produce the corresponding amides. Using this reaction protocol, a variety of N-Alloc-, N-Boc-, and N-Cbz-protected aliphatic amines and aryl amines were efficiently converted to amides with high yields. This method is highly effective for the synthesis of amides and offers a promising approach for facile amidation.
Synthesis and structure-activity relationship study of pyrrolidine-oxadiazoles as anthelmintics against Haemonchus contortus
Ruan, Banfeng,Zhang, Yuezhou,Tadesse, Solomon,Preston, Sarah,Taki, Aya C.,Jabbar, Abdul,Hofmann, Andreas,Jiao, Yaqing,Garcia-Bustos, Jose,Harjani, Jitendra,Le, Thuy Giang,Varghese, Swapna,Teguh, Silvia,Xie, Yiyue,Odiba, Jephthah,Hu, Min,Gasser, Robin B.,Baell, Jonathan
supporting information, (2020/02/04)
Parasitic roundworms (nematodes) are significant pathogens of humans and animals and cause substantive socioeconomic losses due to the diseases that they cause. The control of nematodes in livestock animals relies heavily on the use of anthelmintic drugs. However, their extensive use has led to a widespread problem of drug resistance in these worms. Thus, the discovery and development of novel chemical entities for the treatment of parasitic worms of humans and animals is needed. Herein, we describe our medicinal chemistry optimization efforts of a phenotypic hit against Haemonchus contortus based on a pyrrolidine-oxadiazole scaffold. This led to the identification of compounds with potent inhibitory activities (IC50 = 0.78–22.4 μM) on the motility and development of parasitic stages of H. contortus, and which were found to be highly selective in a mammalian cell counter-screen. These compounds could be used as suitable chemical tools for drug target identification or as lead compounds for further optimization.
Synthesis and biological evaluation of a new series of 1-aryl-3-[4-(pyridin-2-ylmethoxy)phenyl]urea derivatives as new anticancer agents
Feng, Jian,Li, Tai,Liang, Shishao,Zhang, Chuanming,Tan, Xiaoyu,Ding, Ning,Wang, Xin,Liu, Xiaoping,Hu, Chun
, p. 1413 - 1423 (2020/05/22)
The diaryl ureas are very important fragments in medicinal chemistry. By means of computer-aided design, 1-aryl-3-[4-(pyridin-2-ylmethoxy)phenyl]urea derivatives were designed and synthesized, and evaluated for their antiproliferative activity against A549, HCT-116, PC-3 cancer cell lines, and HL7702 human normal liver cell lines in vitro by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide colorimetric assay. Most of the target compounds demonstrate significant antiproliferative effects on all the selective cancer cell lines. The calculated IC50 values were reported. The target compound 1-(4-chlorophenyl)-3-{4-{[3-methyl-4-(2,2,2-trifluoroethoxy)pyridin-2-yl]methoxy}phenyl}urea (7u) demonstrated the most potent inhibitory activity (IC50 = 2.39 ± 0.10 μM for A549 and IC50 = 3.90 ± 0.33 μM for HCT-116), comparable to the positive-control sorafenib (IC50 = 2.12 ± 0.18 μM for A549 and IC50 = 2.25 ± 0.71 μM for HCT-116). Conclusively, 1-aryl-3-[4-(pyridin-2-ylmethoxy)phenyl]urea derivatives as the new anticancer agents were discovered, and could be used as the potential BRAF inhibitors for further research.
Discovery of SP-96, the first non-ATP-competitive Aurora Kinase B inhibitor, for reduced myelosuppression
Lakkaniga, Naga Rajiv,Zhang, Lingtian,Belachew, Binyam,Gunaganti, Naresh,Frett, Brendan,Li, Hong-yu
, (2020/07/25)
Aurora Kinase B is a serine-threonine kinase known to be overexpressed in several cancers, with no inhibitors approved for clinical use. Herein, we present the discovery and optimization of a series of novel quinazoline-based Aurora Kinase B inhibitors. The lead inhibitor SP-96 shows sub-nanomolar potency in Aurora B enzymatic assays (IC50 = 0.316 ± 0.031 nM). We identified the important pharmacophore features resulting in selectivity against receptor tyrosine kinases. Particularly, SP-96 shows >2000 fold selectivity against FLT3 and KIT which is important for normal hematopoiesis. This could diminish the adverse effect of neutropenia reported in the clinical trials of the Aurora B inhibitor Barasertib, which inhibits FLT3 and KIT in addition to Aurora B. Enzyme kinetics of SP-96 shows non-ATP-competitive inhibition which makes it a first-in-class inhibitor. Further, SP-96 shows selective growth inhibition in NCI60 screening, including inhibition of MDA-MD-468, a Triple Negative Breast Cancer cell line.
Hit-to-lead optimization of novel benzimidazole phenylacetamides as broad spectrum trypanosomacides
Avery, Vicky M.,Baell, Jonathan,McNamara, Nicole,Rahmani, Raphael,Sykes, Melissa L.
supporting information, p. 685 - 695 (2020/08/24)
Trypanosoma cruzi and Trypanosoma brucei are the parasitic causative agents of Chagas disease and human African trypanosomiasis (HAT), respectively. The drugs currently used to treat these diseases are not efficacious against all stages and/or parasite sub-species, often displaying side effects. Herein, we report the SAR exploration of a novel hit, 2-(4-chlorophenyl)-N-(1-propyl-1H-benzimidazol-2-yl)acetamide previously identified from high throughput screens against T. cruzi, Trypanosoma brucei brucei and Leishmania donovani. An informative set of analogues was synthesized incorporating key modifications of the scaffold resulting in improved potency whilst the majority of compounds retained low cytotoxicity against H9c2 and HEK293 cell lines. The SAR observed against T. cruzi broadly matches that observed against T.b. brucei, suggesting the possibility for a broad-spectrum candidate. This class of compounds therefore warrants further investigation towards development as a treatment for Chagas disease and HAT. This journal is
Design, synthesis and antitumor assessment of phenylureas bearing 5-fluoroindolin-2-one moiety
Cai, Yunrui,Chen, Tong,Zhu, Huajian,Zou, Hongbin
, p. 958 - 968 (2020/08/19)
Background: The development of novel antineoplastic agents remains highly desirable. Objective: This study focuses on the design, synthesis, and antitumor evaluation of phenyl ureas bearing 5-fluoroindolin-2-one moiety. Methods: Three sets of phenylureas were designed and synthesized and their antiproliferative abil-ity was measured against four human carcinoma cell lines (Hela, Eca-109, A549, and MCF-7) via MTT assay. In vivo anticancer activity was further evaluated in xenograft models of human breast cancer (MCF-7). Results: A total of twenty-one new compounds were synthesized and characterized by means of1 H and13 C NMR as well as HR-MS. Three sets of compounds (1a?1c, 2a?2c, and 3a?3c) were ini-tially constructed, and preliminary antiproliferative activities of these molecules were evaluated against Hela, Eca-109, A549 and MCF-7, highlighting the meta-substituted phenylureas (1a?1c) as the most cytotoxic set. A series of meta-substituted phenylureas derivatives (1d?1o) were then designed and synthesized for structure-activity relationship study. Most of the new compounds showed desirable cytotoxicity, among which compound 1g exhibited the most remarkable cyto-toxic effects against the tested human cancer cells with IC50 values ranging from 1.47 to 6.79 μM. Further studies showed that compound 1g suppressed tumor growth in human breast cancer (MCF-7) xenograft models without affecting the body weight of its recipients. Conclusion: In this study, twenty-one new compounds, containing the privileged structures of phenylurea and 5-fluoroindolin-2-one, were designed and synthesized. Subsequent structure-activity studies showed that 1g was the most bioactive antitumor agent among all tested com-pounds, hence a potentially promising lead compound once given further optimization.