3282-30-2Relevant articles and documents
Nickel-catalyzed direct C-H bond sulfenylation of acylhydrazines
Li, Jun-Ming,Yu, Yang,Weng, Jiang,Lu, Gui
, p. 6047 - 6056 (2018)
A Ni-catalyzed direct C-H bond sulfenylation of acylhydrazines was developed. The reaction used N-(pyridinyl)hydrazine as the bidentate-directing group, which can be smoothly removed through reductive N-N cleavage. This system can bear various important functional groups, providing an efficient route for the preparation of diverse diaryl sulfides.
Rhodium(III)-catalyzed chemodivergent annulations between phenyloxazoles and diazos via C–H activation
Zhang, Xueguo,Wang, Peigen,Zhu, Liangwei,Chen, Baohua
supporting information, p. 695 - 699 (2020/06/28)
Acid-controlled, chemodivergent and redox-neutral annulations for the synthesis of isocoumarins and isoquinolinones have been realized via Rh(III)-catalyzed C[sbnd]H activation. Diazo compounds act as a carbene precursor, and coupling occurs in one-pot process, where adipic acid and trimethylacetic acid promote chemodivergent cyclizations.
Synthesis, computational studies and enzyme inhibitory kinetics of benzothiazole-linked thioureas as mushroom tyrosinase inhibitors
Ujan, Rabail,Saeed, Aamer,Ashraf, Saba,Channar, Pervaiz Ali,Abbas, Qamar,Rind, Mahboob Ali,Hassan, Mubashir,Raza, Hussain,Seo, Sung-Yum,El-Seedi, Hesham R.
, p. 7035 - 7043 (2020/08/12)
Herein, we report synthesis of a set of benzothiazole-thiourea hybrids with aromatic and aliphatic side chains (BT1 to BT9) using an elegant synthetic strategy. The newly synthesized benzothiazole-thiourea conjugates were subjected to In-vitro tyrosinase inhibition and free radical scavenging activity. Majority of the compounds indicated inhibition considerably improved than the standard; compound (Kojic acid with IC50 = 16.8320 ± 1.1600 μM) BT2 with IC50 = 1.3431 ± 0.0254 μM was found to be the best inhibitor. A non-competitive mode of inhibition of BT2 was disclosed with Ki value of 2.8 μM. In order to study enzyme-inhibitor interactions SAR analysis molecular docking was carried out. The amino groups of thiourea were involved in hydrogen bonding with Glu322 showing the bond length of 1.74 and 2.70 ?, respectively. Moreover, the coupling of π-π was displayed between benzothiazole and benzene rings of His244 and His263, respectively. The outcome of this study might help to develop new inhibitors of melanogenesis, important for cosmetic and food products. Communicated by Ramaswamy H. Sarma.
Benzimidazole tethered thioureas as a new entry to elastase inhibition and free radical scavenging: Synthesis, molecular docking, and enzyme inhibitory kinetics
Abbas, Qamar,Ashraf, Saba,Channar, Pervaiz Ali,Hassan, Abbas,Hassan, Mubashar,Rafique, Hummera,Raza, Hussain,Rind, Mahboob Ali,Saeed, Aamer,Seo, Sung-Yum,Ujan, Rabail,Ul-Hamid, Anwar
, (2021/07/02)
The porcine pancreatic elastase inhibition and free-radical scavenging play a crucial role in age progression. All the series of 10 newly synthesized benzimidazole thioureas (4a-j) were assessed for elastase inhibition and radical scavenging activity to identify the suitable anti-aging ingredient for cosmetics products. The compounds 4e, 4f, 4g, and 4h showed inhibition better than the standard, while compound 4f showed the most significant elastase inhibition with the IC50 value of 1.318 ± 0.025 μM compared with oleanic acid IC50 13.451 ± 0.014 used ±1.989 and 41.563 ± 0.824, respectively, as standard. Molecular docking studies were performed and the compound 4f showed binding energy of 7.2 kcal/mol. Kinetics studies revealed inhibition of the pancreatic elastase in a competitive manner. The relative binding energy and structure activity relationship (SAR) identified compound 4f as an effective inhibitor of porcine pancreatic elastase. Compounds 4e and 4i showed remarkable free-radical scavenging activity with SC50 values of 26.421.
AKT INHIBITOR
-
Paragraph 0122-0123; 0128; 096-0197, (2021/12/18)
The present invention discloses an AKT inhibitor, and specifically relates to a compound represented by formula I or a pharmaceutically acceptable salt thereof. The present invention further provides a preparation method thereof, and the use thereof in prevention and/or treatment of a disease mediated by AKT protein kinase.
Palladium-catalyzed cascade decarboxylative amination/6- endo-dig benzannulation of o-alkynylarylketones with n-hydroxyamides to access diverse 1-naphthylamine derivatives
Zuo, Youpeng,He, Xinwei,Tang, Qiang,Hu, Wangcheng,Zhou, Tongtong,Shang, Yongjia
supporting information, p. 3890 - 3894 (2020/05/18)
An efficient and practical one-pot strategy to produce highly substituted 1-naphthylamines via sequential palladium-catalyzed decarboxylative amination/intramolecular 6-endo-dig benzannulation reactions has been described. In this reaction, a broad range of electron-rich, electron-neutral, and electron-deficient o-alkynylarylketones react well with N-hydroxyl aryl/alkylamides to give a diversity of 1-naphthylamines in good to excellent yields under mild reaction conditions. The gram-scale synthesis, with benefits such as undiminished product yield and easy transformation, illustrated the practicality of this method.
Base-promoted Lewis acid catalyzed synthesis of quinazoline derivatives
Cui, Xin-Feng,Hu, Fang-Peng,Huang, Guo-Sheng,Lu, Guo-Qiang
supporting information, p. 4376 - 4380 (2020/10/20)
A one-pot protocol has been developed for the synthesis of quinazolinones from amide-oxazolines with TsCl via a cyclic 1,3-azaoxonium intermediate and 6π electron cyclization in the presence of a Lewis acid and base. The process is operationally simple and has a broad substrate scope. This method provides a unique strategy for the construction of quinazolinones.
Modular Tuning of Electrophilic Reactivity of Iridium Nitrenoids for the Intermolecular Selective α-Amidation of β-Keto Esters
Lee, Minhan,Jung, Hoimin,Kim, Dongwook,Park, Jung-Woo,Chang, Sukbok
supporting information, p. 11999 - 12004 (2020/08/06)
We report herein an Ir-catalyzed intermolecular amino group transfer to β-keto esters (amides) to access α-aminocarbonyl products with excellent chemoselectivity. The key strategy was to engineer electrophilicity of the putative Ir-nitrenoids by tuning electronic property of the κ2-N,O chelating ligands, thus facilitating nucleophilic addition of enol π-bonds of 1,3-dicarbonyl substrates.
Metal-Free Photoinduced Hydroalkylation Cascade Enabled by an Electron-Donor-Acceptor Complex
Correia, José Tiago M.,Piva Da Silva, Gustavo,Kisukuri, Camila M.,André, Elias,Pires, Bruno,Carneiro, Pablo S.,Paixa?, Márcio W.
, p. 9820 - 9834 (2020/09/03)
A metal- A nd photocatalyst-free photoinduced radical cascade hydroalkylation of 1,7-enynes has been disclosed. The process is triggered by a single electron transfer (SET) event involving a photoexcited electron-donor-acceptor complex between an NHPI ester and a Hantzsch ester, which decomposes to afford a tertiary radical that is readily trapped by the enyne. The method provides an operationally simple, robust, and step-economical approach toward the construction of diversely functionalized dihydroquinolinones bearing quaternary centers. A sequential one-pot hydroalkylation-isomerization approach is also offered, giving access to a family of quinolinones. A wide substrate scope and high functional group tolerance were observed in both approaches.
Ruthenium-Catalyzed Reductive Arylation of N-(2-Pyridinyl)amides with Isopropanol and Arylboronate Esters
Ronson, Thomas O.,Renders, Evelien,Van Steijvoort, Ben F.,Wang, Xubin,Wybon, Clarence C. D.,Prokopcová, Hana,Meerpoel, Lieven,Maes, Bert U. W.
supporting information, p. 482 - 487 (2019/01/04)
A new three-component reductive arylation of amides with stable reactants (iPrOH and arylboronate esters), making use of a 2-pyridinyl (Py) directing group, is described. The N-Py-amide substrates are readily prepared from carboxylic acids and PyNH2, and the resulting N-Py-1-arylalkanamine reaction products are easily transformed into the corresponding chlorides by substitution of the HN-Py group with HCl. The 1-aryl-1-chloroalkane products allow substitution and cross-coupling reactions. Therefore, a general protocol for the transformation of carboxylic acids into a variety of functionalities is obtained. The Py-NH2 by-product can be recycled.