75-85-4Relevant articles and documents
In situ 13C DEPT-MRI as a tool to spatially resolve chemical conversion and selectivity of a heterogeneous catalytic reaction occurring in a fixed-bed reactor
Akpa, Belinda S.,Mantle, Michael D.,Sederman, Andrew J.,Gladden, Lynn F.
, p. 2741 - 2743 (2005)
The distortionless enhancement by polarisation transfer (DEPT) nuclear magnetic resonance (NMR) technique, combined with magnetic resonance imaging (MRI), has been used to provide the first in situ spatially-resolved and quantitative measurement of chemical conversion and selectivity within a fixed-bed reactor using natural abundance 13C NMR. The Royal Society of Chemistry 2005.
In situ X-ray absorption spectroscopic studies of magnetic Fe@FexOy/Pd nanoparticle catalysts for hydrogenation reactions
Yao, Yali,Rubino, Stefano,Gates, Byron D.,Scott, Robert W.J.,Hu, Yongfeng
, p. 180 - 186 (2017)
Core@shell Fe@FexOy nanoparticles (NPs) have attracted a great deal of interest as potential magnetic supports for catalytic metals via galvanic exchange reactions. In this study Fe@FexOy/Pd bimetallic NPs were synthesized through galvanic exchange reactions using 50:1, 20:1 and 5:1 molar ratios of Fe@FexOy NPs to Pd(NO3)2. The resulting Fe@FexOy/Pd NPs have Pd NPs on the Fe oxide surfaces, and still retain their response to external magnetic fields. The materials could be recovered after the reaction by an external magnetic field, and agitation of the solution via a magnetic field led to improvements of mass transfer of the substrates to the catalyst surface for hydrogenation reactions. The Fe@FexOy/Pd NPs derived from the 5:1 molar ratio of their respective salts (Fe:Pd) exhibited a higher catalytic activity than particles synthesized from 20:1 and 50:1 molar ratios for the hydrogenation of 2-methyl-3-buten-2-ol. The highest turnover frequency reached 3600?h?1 using ethanol as a solvent. In situ XANES spectra show that the Fe@FexOy NPs in the Fe@FexOy/Pd system are easily oxidized when dispersed in water, while they are very stable if ethanol is used as a solvent. This oxidative stability has important implications for the sustainable use of such particles in real world applications.
Structure sensitivity of alkynol hydrogenation on shape- and size-controlled palladium nanocrystals: Which sites are most active and selective?
Crespo-Quesada, Micaela,Yarulin, Artur,Jin, Mingshang,Xia, Younan,Kiwi-Minsker, Lioubov
, p. 12787 - 12794 (2011)
The activity and selectivity of structure-sensitive reactions are strongly correlated with the shape and size of the nanocrystals present in a catalyst. This correlation can be exploited for rational catalyst design, especially if each type of surface atom displays a different behavior, to attain the highest activity and selectivity. In this work, uniform Pd nanocrystals with cubic (in two different sizes), octahedral, and cuboctahedral shapes were synthesized through a solution-phase method with poly(vinyl pyrrolidone) (PVP) serving as a stabilizer and then tested in the hydrogenation of 2-methyl-3-butyn-2-ol (MBY). The observed activity and selectivity suggested that two types of active sites were involved in the catalysis-those on the planes and at edges-which differ in their coordination numbers. Specifically, semihydrogenation of MBY to 2-methyl-3-buten-2-ol (MBE) occurred preferentially at the plane sites regardless of their crystallographic orientation, Pd(111) and/or Pd(100), whereas overhydrogenation occurred mainly at the edge sites. The experimental data can be fit with a kinetic modeling based on a two-site Langmuir-Hinshelwood mechanism. By considering surface statistics for nanocrystals with different shapes and sizes, the optimal catalyst in terms of productivity of the target product MBE was predicted to be cubes of roughly 3-5 nm in edge length. This study is an attempt to close the material and pressure gaps between model single-crystal surfaces tested under ultra-high-vacuum conditions and real catalytic systems, providing a powerful tool for rational catalyst design.
Chromium-Catalyzed Production of Diols From Olefins
-
Paragraph 0111, (2021/03/19)
Processes for converting an olefin reactant into a diol compound are disclosed, and these processes include the steps of contacting the olefin reactant and a supported chromium catalyst comprising chromium in a hexavalent oxidation state to reduce at least a portion of the supported chromium catalyst to form a reduced chromium catalyst, and hydrolyzing the reduced chromium catalyst to form a reaction product comprising the diol compound. While being contacted, the olefin reactant and the supported chromium catalyst can be irradiated with a light beam at a wavelength in the UV-visible spectrum. Optionally, these processes can further comprise a step of calcining at least a portion of the reduced chromium catalyst to regenerate the supported chromium catalyst.
Reasons for the Inverse Dependence of the Turnover Frequency of Hydrogenation of Unsaturated Compounds on Palladium Catalyst Concentration
Skripov,Belykh,Sterenchuk,Levchenko,Schmidt
, p. 299 - 306 (2021/04/26)
Abstract: The hypotheses about reasons for the inverse dependence of the turnover frequency of hydrogenation of unsaturated compounds (alkyne, alkynol, olefin) on the catalyst concentration were discriminated by kinetic methods combined with electron microscopy. The reasons are: dissociation of polycrystalline Pd–P particles, equilibrium shift (stabilized cluster–cluster + stabilizer), and aggregation–disaggregation of Pd–P particles, the latter being the main reason for the concentration range 0.125–1 mmol/L. The effect of aggregation–disaggregation of Pd–P particles on the catalyst activity differs depending on the substrate. The proposed kinetic model was shown to be consistent with the experimental data for styrene hydrogenation used as an example. The rate constants of some stages were determined.
Novel nickel nanoparticles stabilized by imidazolium-amidinate ligands for selective hydrogenation of alkynes
López-Vinasco, Angela M.,Martínez-Prieto, Luis M.,Asensio, Juan M.,Lecante, Pierre,Chaudret, Bruno,Cámpora, Juan,Van Leeuwen, Piet W. N. M.
, p. 342 - 350 (2020/02/04)
The main challenge in the hydrogenation of alkynes into (E)- or (Z)-alkenes is to control the selective formation of the alkene, avoiding the over-reduction to the corresponding alkane. In addition, the preparation of recoverable and reusable catalysts is of high interest. In this work, we report novel nickel nanoparticles (Ni NPs) stabilized by three different imidazolium-amidinate ligands (ICy·(Ar)NCN; L1: Ar = p-tol, L2: Ar = p-anisyl and L3: Ar = p-ClC6H4). The as-prepared Ni NPs were fully characterized by (HR)-TEM, XRD, WASX, XPS and VSM. The nanocatalysts are active in the hydrogenation of various substrates. They present a remarkable selectivity in the hydrogenation of alkynes towards (Z)-alkenes, particularly in the hydrogenation of 3-hexyne into (Z)-3-hexene under mild reaction conditions (room temperature, 3% mol Ni and 1 bar H2). The catalytic behaviour of Ni NPs was influenced by the electron donor/acceptor groups (-Me, -OMe, -Cl) in the N-aryl substituents of the amidinate moiety of the ligands. Due to the magnetic character of the Ni NPs, recycling experiments were successfully performed after decantation in the presence of an external magnet, which allowed us to recover and reuse these catalysts at least 3 times preserving both activity and chemoselectivity.
Palladium-Phosphorus Nanoparticles as Effective Catalysts of the Chemoselective Hydrogenation of Alkynols
Belykh, L. B.,Dashabylova, T. M.,Gvozdovskaya, K. L.,Schmidt, F. K.,Skripov, N. I.,Sterenchuk, T. P.,Zherdev, V. V.
, p. 575 - 588 (2020/08/05)
Abstract: The effect of the composition of the catalytic system and reaction conditions on the properties of phosphorus-modified palladium catalysts in hydrogenations of alkynols was studied. Modification with phosphorus increased the activity and turnover number of palladium catalysts in the hydrogenation of the model compound 2-methyl-3-butyn-2-ol (MBY) without any reduction in the selectivity to 2-methyl-3-butene-2-ol at 95–98percent MBY conversion. The promoting effect of phosphorus on the properties of the palladium catalyst is caused not only by an increase in the particle size, but also, probably, by a change in the energy of interaction of reagents with the active sites. Hypotheses on the nature of the carriers of catalytic activity in Pd–P particles were discriminated using kinetic methods with the differential selectivity of catalytic systems as the main measured parameter under the conditions of competition between two alkynols. The hydrogenation of acetylenic alcohols involves only one of the two potentially active forms in Pd–P nanoparticles—Pd(0) clusters, whereas the hydrogenation of the resulting allyl alcohols involves both Pd(0) clusters and palladium phosphides.
Internal Surface Coating of a Capillary Microreactor for the Selective Hydrogenation of 2-Methyl-3-Butyn-2-Ol Using a PdZn/TiO2 Catalyst. The Effect of the Catalyst’s Activation Conditions on Its Catalytic Properties
Okhlopkova,Kerzhentsev,Ismagilov
, p. 347 - 356 (2018/06/12)
Finely divided polymer-stabilized PdZn bimetallic nanoclusters are prepared by the polyol method. TiO2 matrix-impregnated nanoclusters coated on the inner surface of a capillary microreactor are used as catalysts for the selective hydrogenation of 2-methyl-3-butyn-2-ol. The effect of the activation conditions (duration, temperature, and gas medium composition) on the physicochemical and catalytic properties of the coatings is studied. It is shown that their catalytic activities decrease and the reaction’s selectivity increases with an increase in the reaction time and the time of hydrogen reduction at 573 K. The highest selectivity (96.5% at a conversion rate of 99%) is reached on the coatings reduced with hydrogen for 6 h. The coatings remain highly active and stable for 1 month in the continuous flow mode of the reaction. Kinetic simulation showed that a high selectivity level is ensured by a decrease in the rate constants of hydrogenation of 2-methyl-3-buten-2-ol and the ratio of the alkene/alkyne adsorption constants after reductive treatment.
Effect of Γ-alumina nanorods on CO hydrogenation to higher alcohols over lithium-promoted CuZn-based catalysts
Choi, SuMin,Kang, YoungJong,Kim, SangWoo
, p. 188 - 196 (2017/10/16)
To achieve high catalytic activities and long-term stability to produce higher alcohols via CO hydrogenation, the catalytic activities were tuned by controlling the loading amounts of γ-alumina nanorods and Al3+ ions added to modify Cu-Zn catalysts promoted with Li. The selectivity of higher alcohols and the CO conversion to higher alcohols over a Li-modified Cu0.45Zn0.45Al0.1 catalyst supported on 10% nanorods were 1.8 and 2.7 times higher than those with a Cu-Zn catalyst without nanorods and Al3+ ions, respectively. The introduction of the thermally and chemically stable γ-Al2O3 nanorod support and of Al3+ to the modified catalysts improves the catalytic activities by decreasing the crystalline size of CuO and increasing the total basicity. Along with the nanorods, a refractory CuAl2O4 formed by the thermal reaction of CuO and Al3+ enhances the long-term stability by increasing the resistance to sintering of the catalyst.
Pd3Sn nanoparticles on TiO2 and ZnO supports as catalysts for semi-hydrogenation: Synthesis and catalytic performance
Johnston, Shaun K.,Cherkasov, Nikolay,Pérez-Barrado, Elena,Aho, Atte,Murzin, Dmitry Y.,Ibhadon, Alex O.,Francesconi, M. Grazia
, p. 40 - 45 (2017/07/18)
The two catalysts Pd3Sn/TiO2 and Pd3Sn/ZnO were prepared via a one-pot procedure based on the “polyol method” with the addition of a capping agent (polyvinylpyrrolidone) to control the particle size distribution. The same procedure was used to prepare Pd/TiO2 and Pd/ZnO for comparison. All four catalysts showed high activity and selectivity for the selective hydrogenation of 2-methyl-3-butyn-2-ol (MBY) to 2-methyl-3-buten-2-ol (MBE) in the liquid phase under identical conditions. However, Pd3Sn/TiO2 and Pd3Sn/ZnO show selectivities to alkene significantly higher than that of the Pd catalysts. Specifically, the selectivity increases from 96.4% to 97.4% on TiO2 support, and 96.2% to 97.6% on ZnO support, at 90% conversion. Transition electron microscopy shows nanoparticles evenly dispersed on the support, with mean particle sizes as low as 4.1 (±0.8) nm when Sn is incorporated into the catalyst. Unsupported Pd3Sn was prepared using the same method and characterised by powder X-Ray diffraction followed by the Rietveld refinement. Pd3Sn was found to be single-phase and isostructural to Pd metal with a face centred cubic unit cell.