86-98-6Relevant articles and documents
Highly chemoselective deoxygenation of N-heterocyclic: N -oxides under transition metal-free conditions
Kim, Se Hyun,An, Ju Hyeon,Lee, Jun Hee
supporting information, p. 3735 - 3742 (2021/05/04)
Because their site-selective C-H functionalizations are now considered one of the most useful tools for synthesizing various N-heterocyclic compounds, the highly chemoselective deoxygenation of densely functionalized N-heterocyclic N-oxides has received much attention from the synthetic chemistry community. Here, we provide a protocol for the highly chemoselective deoxygenation of various functionalized N-oxides under visible light-mediated photoredox conditions with Na2-eosin Y as an organophotocatalyst. Mechanistic studies imply that the excited state of the organophotocatalyst is reductively quenched by Hantzsch esters. This operationally simple technique tolerates a wide range of functional groups and allows high-yield, multigram-scale deoxygenation. This journal is
Metal-Free Deoxygenation of Amine N-Oxides: Synthetic and Mechanistic Studies
Lecroq, William,Schleinitz, Jules,Billoue, Mallaury,Perfetto, Anna,Gaumont, Annie-Claude,Lalevée, Jacques,Ciofini, Ilaria,Grimaud, Laurence,Lakhdar, Sami
, p. 1237 - 1242 (2021/06/01)
We report herein an unprecedented combination of light and P(III)/P(V) redox cycling for the efficient deoxygenation of aromatic amine N-oxides. Moreover, we discovered that a large variety of aliphatic amine N-oxides can easily be deoxygenated by using only phenylsilane. These practically simple approaches proceed well under metal-free conditions, tolerate many functionalities and are highly chemoselective. Combined experimental and computational studies enabled a deep understanding of factors controlling the reactivity of both aromatic and aliphatic amine N-oxides.
Highly Chemoselective Deoxygenation of N-Heterocyclic N-Oxides Using Hantzsch Esters as Mild Reducing Agents
An, Ju Hyeon,Kim, Kyu Dong,Lee, Jun Hee
supporting information, p. 2876 - 2894 (2021/02/01)
Herein, we disclose a highly chemoselective room-temperature deoxygenation method applicable to various functionalized N-heterocyclic N-oxides via visible light-mediated metallaphotoredox catalysis using Hantzsch esters as the sole stoichiometric reductant. Despite the feasibility of catalyst-free conditions, most of these deoxygenations can be completed within a few minutes using only a tiny amount of a catalyst. This technology also allows for multigram-scale reactions even with an extremely low catalyst loading of 0.01 mol %. The scope of this scalable and operationally convenient protocol encompasses a wide range of functional groups, such as amides, carbamates, esters, ketones, nitrile groups, nitro groups, and halogens, which provide access to the corresponding deoxygenated N-heterocycles in good to excellent yields (an average of an 86.8% yield for a total of 45 examples).
Synthesis method of 4,7-dichloroquinoline
-
, (2020/07/15)
The invention discloses a synthesis method of 4,7-dichloroquinoline. The synthesis method is characterized by comprising the following steps: synthesizing 7-chloro-4-hydroxylquinoline-3-carboxylic acid by using a one-pot method, and carrying out decarboxylation and chlorination on the 7-chloro-4-hydroxylquinoline-3-carboxylic acid to obtain 4,7-dichloroquinoline. The step of synthesizing the 7-chloro-4-hydroxylquinoline-3-carboxylic acid by the one-pot method comprises the following sub-steps: with m-chloroaniline, triethyl orthoformate or trimethyl orthoformate and diethyl malonate as raw materials, carrying out condensation under the catalysis of anhydrous ferric trichloride to obtain diethyl 2-[[(3-chlorophenyl)amino]methylene]malonate, directly adding a condensation reaction solution into an organic solvent, carrying out heating cyclization to obtain 7-chloro-4-hydroxylquinoline-3-carboxylic acid ethyl ester, and after the cyclization reaction is completed, adding sodium hydroxidefor hydrolysis to obtain 7-chloro-4-hydroxylquinoline-3-carboxylic acid. Although the whole process comprises five reactions, intermediate products are good enough in purity and can be directly synthesized into a target product without purification, so operation is easy and convenient and industrialization is facilitated; and raw materials are easily available, and pollution is small.
Preparation method 4-7 -dichloroquinoline (by machine translation)
-
, (2020/10/20)
The method comprises the steps of: adding 4 chloroaniline and ethoxymethyl diethyl malonate as raw materials, carrying out decarboxylation reaction, carrying out decarboxylation through condensation, cyclization and hydrolysis, carrying out decarboxylation reaction, adding sulfuric acid to 7 - under 3 - pressure, 4 and washing to obtain solid 7 - hydroxyl 3 - chloroquinolines. 230 - 260 °C. The method comprises the following steps: carrying out decarboxylation reaction, adding sulfuric acid to reaction completely, layering, organic layer recovery and water layer reaction till 90 - 100 °C 6.0 - 6.5 kg reaction until reaction is complete 90 - 100 °C, layering, organic layer recovery and water layer reaction; and the steps and chlorination are carried out 150 -170 °C pH4 - 5 4 -7 . Reaction conditions are mild, yield is high, and quality is good. (by machine translation)
Design, synthesis and study of antibacterial and antitubercular activity of quinoline hydrazone hybrids
Eswaran, Sumesh,Shruthi, T. G.,Subramanian, Sangeetha
, p. 137 - 147 (2020/11/12)
Emerging bacterial resistance is causing widespread problems for the treatment of various infections. Therefore, the search for antimicrobials is a never-ending task. Hydrazones and quinolines possess a wide variety of biological activities. Herewith, eleven quinoline hydrazone derivatives have been designed, synthesized, characterized and evaluated for their antibacterial activity and antitubercular potential against Mtb WT H37Rv. Compounds QH-02, QH-04 and QH-05 were found to be promising compounds with an MIC value of 4 μg/mL against Mtb WT H37Rv. Compounds QH-02, QH-04, QH-05, and QH-11 were also found to be active against bacterial strains including Acinetobacter baumanii, Escherichia coli and Staphylococcus aureus. Further, we have carried out experiments to confirm the cytotoxicity of the active compounds and found them to be non-toxic.
Design and synthesis of 4(1H)-quinolone derivatives as autophagy inducing agents by targeting ATG5 protein
Jia, Yifan,Yu, Difei,Huang, Qiuhua,Zhang, Xiaodong,Qiu, Liqin,Cao, Rihui,Du, Runlei,Liu, Wenbin
, p. 884 - 890 (2020/07/10)
Background: Quinolines have been characterized as a class of potential antitumor agents, and a large number of natural and synthetic quinolines acting as antitumor agents were reported. Methods: A series of 7-chloro-4(1H)-quinolone derivatives were synthesized. The antiproliferative effect of these compounds was evaluated by MTT assay against five human tumor cell lines. The mechanism of action of the selected compound 7h was also investigated. Results and Discussion: Most of the compounds had more potent antiproliferative activities than the lead compound 7-chloro-4(1H)-quinolone 6b. Compound 7h was found to be the most potent antiproliferative agent against human tumor cell lines. Further investigation demonstrated that compound 7h triggered ATG5-dependent autophagy of colorectal cancer cells by promoting the functions of LC3 proteins. Conclusion: These results were useful for designing and discovering more potent novel antitumor agents endowed with better pharmacological profiles.
Synthesis, antituberculosis studies and biological evaluation of new quinoline derivatives carrying 1,2,4-oxadiazole moiety
Shruthi,Eswaran, Sumesh,Shivarudraiah, Prasad,Narayanan, Shridhar,Subramanian, Sangeetha
, p. 97 - 102 (2018/11/23)
Tuberculosis is the infectious disease caused by mycobacterium tuberculosis (Mtb), responsible for the utmost number of deaths annually across the world. Herein, twenty-one new substituted 1,2,4-oxadiazol-3-ylmethyl-piperazin-1-yl-quinoline derivatives were designed and synthesized through multistep synthesis followed by in vitro evaluation of their antitubercular potential against Mtb WT H37Rv. The compound QD-18 was found to be promising with MIC value of 0.5 μg/ml and QD-19 to QD-21 were also remarkable with MIC value of 0.25 μg/ml. Additionally, we have carried out experiments to confirm the metabolic stability, cytotoxicity and pharmacokinetics of these compounds along with kill kinetics of QD-18. These compounds were found to be orally bioavailable and highly effective. Altogether, these results indicate that QD-18, QD-19, QD-20 and QD-21 are promising lead compounds for the development of a novel chemical class of antitubercular drugs.
Design, synthesis and biological evaluation of new quinoline derivatives as potential antitumor agents
Su, Tong,Zhu, Jiongchang,Sun, Rongqin,Zhang, Huihui,Huang, Qiuhua,Zhang, Xiaodong,Du, Runlei,Qiu, Liqin,Cao, Rihui
, p. 154 - 167 (2019/06/11)
A series of new quinoline derivatives was designed, synthesized and evaluated for their antiproliferative activity. The results demonstrated that compounds 11p, 11s, 11v, 11x and 11y exhibited potent antiproliferative activity with IC50 value of lower than 10 μM against seven human tumor cell lines, and N-(3-methoxyphenyl)-7- (3-phenylpropoxy)quinolin-4-amine 11x was found to be the most potent antiproliferative agent against HCT-116, RKO, A2780 and Hela cell lines with an IC50 value of 2.56, 3.67, 3.46 and 2.71 μM, respectively. The antitumor efficacy of the representative compound 11x in mice was also evaluated, and the results showed that compound 11x effectively inhibited tumor growth and decreased tumor weight in animal models. Further investigation on mechanism of action indicated that compound 11x could inhibit colorectal cancer growth through ATG5-depenent autophagy pathway. Therefore, these quinoline derivatives are a new class of molecules that have the potential to be developed as new antitumor drugs.
NOVEL COMPOUNDS AND THEIR METHODS OF USE THEREOF
-
, (2020/01/11)
The present invention provides novel quinoline compounds or their pharmaceutically acceptable salts. The compounds of the invention efficacious in the treatment of Tuberculosis and other mycobacterial infections.