95-55-6Relevant articles and documents
Continuous synthesis of aminophenols from nitroaromatic compounds by combination of metal and biocatalyst
Luckarift, Heather R.,Nadeau, Lloyd J.,Spain, Jim C.
, p. 383 - 384 (2005)
The combined action of immobilized hydroxylaminobenzene mutase and zinc in a flow-through system catalyzes the conversion of nitroaromatic compounds to the corresponding ortho-aminophenols, including a novel analog of chloramphenicol.
Ruthenium(II)-Catalyzed Positional Selective C-H Oxygenation of N-Aryl-2-pyrimidines
Sarkar, Tanumay,Pradhan, Sourav,Punniyamurthy, Tharmalingam
, p. 6444 - 6453 (2018)
Efficient Ru-catalyzed regioselective C-H oxygenation of N-aryl-2-pyrimidines is described with aryl carboxylic acids in the presence of AgSbF6 as an additive and Ag2CO3 as an oxidant. The reaction can be extended to alkyl
Modification of poly (ethylene glycol) with a multifunctional silane ligand, stabilization of Ag nanoparticles and its catalytic activity toward nitro-aromatics reduction
Fathalipour, Soghra,Zolali, Amin,Najafpour, Behzad,Pourbeyram, Sima,Zirak, Maryam
, p. 47 - 54 (2021)
The modification of poly (ethylene glycol) (PEG) with (3, 3′-bis-(3-triethoxysilylpropyl)-2, 2′-dithioxo [5, 5′] bithiazolidinylidene-4, 4′-dione) ligand was performed in the presence of Et3N in toluene (MPEG). With the addition of AgNO3, MPEG with obtain
Synthesis and characterization of Pd nanoparticle-modified magnetic Sm2O3–ZrO2 as effective multifunctional catalyst for reduction of 2-nitrophenol and degradation of organic dyes
Yilmaz, Erkan,Tut, Y?ld?z,Turkoglu, Orhan,Soylak, Mustafa
, p. 1721 - 1731 (2018)
In this study, Pd nanoparticle-modified magnetic Sm2O3–ZrO2 material (Pd–Fe3O4–Sm2O3–ZrO2) as multifunctional catalyst was fabricated and used for catalytic reduction
Industrial Cunninghamia lanceolata carbon supported FeO(OH) nanoparticles-catalyzed hydrogenation of nitroarenes
Fu, Lihua,Li, Dingzhong,Lu, Hao,Qiu, Renhua,Sun, Tulai,Xing, Chen,Yang, Tianbao
, (2022/01/11)
The development of green and efficient methods for hydrogenation of nitroarenes is still highly demanding in organic synthesis. Herein, we report an industrial Cunninghamia lanceolata carbon supported FeO(OH) nanoparticles process for the synthesis of aryl amines with good yields via hydrogenation of nitroarenes. Nine key anti-cancer drug intermediates were successfully achieved with protocol. And Osimertinib intermediate 4m can be smoothly synthesized at a 2.67 kg-scale with >99.5% HPLC purity. This protocol features cheap carbon source, highly catalytic activity, simple operation, kilogram-scalable and recyclable catalysts (eight times without observable losing activity).
A DFT and experimental study of the spectroscopic and hydrolytic degradation behaviour of some benzylideneanilines
Nelson, Peter N.,Robertson, Tahjna I.
, (2021/10/12)
The spectroscopic and hydrolytic degradation behaviour of some N-benzylideneanilines are investigated experimentally and theoretically via high quality density function theoretical (DFT) modelling techniques. Their absorption and vibrational spectra, accurately predicted by DFT calculations, are highly dependent on the nature of the substituents on the aromatic rings, hence, though some of their spectroscopic features are similar, energetic differences exist due to differences in their electronic structures. Whereas the o-hydroxy aniline derived adducts undergo hydrolysis via two pathways, the most energetically economical of which is initiated by a fast enthalpy driven hydration, over a conservative free energy (ΔG?) barrier of 53 kJ mol?1, prior to the rate limiting entropy controlled lysis step which occurs via a conservative barrier of ca.132 kJ mol?1, all other compounds hydrolyse via a slower two-step pathway, limited by the hydration step. Barriers heights for both pathways are controlled primarily by the structure and hence, stability of the transition states, all of which are cyclic for both pathways.
Single-Cell-Based Screening and Engineering of d -Amino Acid Amidohydrolases Using Artificial Amidophenol Substrates and Microbial Biosensors
An, Jung-Ung,Kim, Haseong,Kwon, Kil Koang,Lee, Dae-Hee,Lee, Hyewon,Lee, Jin-Young,Lee, Seung-Goo,Park, Sung Hyun,Rha, Eugene,Yeom, Soo-Jin
, p. 1203 - 1211 (2022/01/27)
Enantiomerically pure d-amino acids are important intermediates as chiral building blocks for peptidomimetics and semisynthetic antibiotics. Here, a transcriptional factor-based screening strategy was used for the rapid screening of d-stereospecific amino acid amidase via an enzyme-specific amidophenol substrate. We used a d-threonine amidophenyl derivative to produce 2-aminophenol that serves as a putative enzyme indicator in the presence of d-threonine amidases. Comparative analyses of known bacterial species indicated that several Bacillus strains produce amidase and form putative indicators in culture media. The estimated amidase was cloned and subjected to rapid directed evolution through biosensor cells. Consequently, we characterized the F119A mutation that significantly improved the catalytic activity toward d-alanine, d-threonine, and d-glutamate. Its beneficial effects were confirmed by higher conversions and recurrent applications of the mutant enzyme, compared to the wild-type. This study showed that rapid directed evolution with biosensors coupled to designed substrates is useful to develop biocatalytic processes.
Highly efficient N-doped carbon supported FeSx-Fe2O3 catalyst for hydrogenation of nitroarenes via pyrolysis of sulfurized N,Fe-containing MOFs
Li, Xuewei,She, Wei,Wang, Jing,Li, Weizuo,Li, Guangming
, (2021/05/18)
Integrating MOFs as precursor, especially for employing N-containing organic linkers, with sulfides is an effective method to prepare the highly efficient N-doped carbon supported metal-based catalysts for hydrogenation of nitroarenes. In this work, a N,Fe-containing metal organic frameworks (MOFs; termed as MIL88-HMTA) with spindle-like structure was prepared via self-assembly method, in which hexamethylenetetramine (HMTA) linker was introduced as N source. Subsequently, N-doped carbon supported FeSx-Fe2O3 catalyst (named FeSx-Fe2O3@CN) was fabricated upon the pyrolysis of sulfurized MIL88-HMTA. Catalytic experiments reveal that the FeSx-Fe2O3@CN delivered excellent performance for hydrogenation of nitroarenes in comparison with those of catalyst without sulfidation process (Fe2O3@CN) and conventional MIL88 derived catalyst (Fe2O3@C). The XRD, TEM, SEM/EDX, Raman, UV, and XPS analyses have revealed that the developed FeSx-Fe2O3@CN catalyst exhibited outstanding catalytic efficiency was ascribed to synergistic effect between FeSx and Fe2O3 species, abundant structural defects, more Fe-Nx species, and strengthened decomposition ability of hydrazine hydrate (N2H4?H2O). Furthermore, the effect of sulfidation ratio (the mass ratio between thioacetamide and MIL88-HMTA) towards preparation of the developed FeSx-Fe2O3@CN on the catalytic activity of hydrogenation reaction was also systematically performed. Notably, the optimized catalyst (denoted as FeSx-Fe2O3@CN-8) exhibited unexpected performance and recyclability for hydrogenation of nitroarenes under mild condition. The pyrolysis of sulfurized N-containing MOFs may present a facile approach for fabricating MOFs-derived N-doped carbon supported catalysts, which provides a potential application in heterogeneous catalytic reactions.
Magnetically‐recoverable Schiff base complex of Pd(II) immobilized on Fe3O4@SiO2 nanoparticles: an efficient catalyst for the reduction of aromatic nitro compounds to aniline derivatives
Azadi, Sedigheh,Esmaeilpour, Mohsen,Sardarian, Ali Reza
, p. 809 - 821 (2021/07/20)
Fe3O4@SiO2/Schiff base/Pd(II) is reported as a magnetically recoverable heterogeneous catalyst for the chemoselective reduction of aromatic nitro compounds to the corresponding amines through catalytic transfer hydrogenation (CTH). In this regard, a small amount of the nanocatalyst (0.52?mol% Pd) and hydrazine hydrate, showing safe characteristics and perfect ability as the hydrogen donor, were added to the nitro substrates. The experiments described the successful reduction of aromatic nitro compounds with good to excellent yields and short reaction times. The catalyst, due to its magnetic property, could be simply separated from the reaction mixture by a permanent magnet and reused in seven consecutive reactions without considerable loss in its activity. Moreover, the leaching of Pd was only 3.6% after the seventh run. Thus, the most striking feature of this method is to use a small amount of the magnetic nanocatalyst along with a cheap and safe hydrogen source to produce the important amine substances selectively, which makes the method economical, cheap, environmentally friendly, and simple. Graphic abstract: [Figure not available: see fulltext.]
Highly porous copper-supported magnetic nanocatalysts: made of volcanic pumice textured by cellulose and applied for the reduction of nitrobenzene derivatives
Fazeli, Atefeh,Maleki, Ali,Qazi, Fateme Sadat,Saeidirad, Mahdi,Shalan, Ahmed Esmail,Taheri-Ledari, Reza
, p. 25284 - 25295 (2021/08/05)
Herein, a novel designed heterogeneous catalytic system constructed of volcanic pumice magnetic particles (VPMPs), cellulose (CLS) as a natural polymeric matrix, and copper nanoparticles (Cu NPs) is presented. Also, to enhance the inherent magnetic property of VPMP, iron oxide (Fe3O4) nanoparticles have been prepared and incorporated in the structureviaanin situprocess. As its first and foremost excellent property, the designed composite is in great accordance with green chemistry principles because it contains natural ingredients. Another brilliant point in the architecture of the designed composite is the noticeable porosity of VPMP as the core of the composite structure (surface area: 84.473 m2g?1). This great porosity leads to the use of a small amount (0.05 g) of the particles for catalytic purposes. However, the main characterization methods, such as Fourier-transform infrared and energy-dispersive X-ray spectroscopy, thermogravimetric analysis, and electron microscopy, revealed that the spherical metallic particles (Fe and Cu oxides) were successfully distributed onto the surface of the VPMP and CLS matrices. Further, vibrating-sample magnetometer analysis confirmed the enhancement of the magnetic property (1.5 emu g?1) of the composite through the addition of Fe3O4nanoparticles. Further, the prepared (Fe3O4@VPMP/CLS-Cu) nanocomposite has been applied to facilitate the reduction reaction of hazardous nitrobenzene derivatives (NBDs) to their aniline analogs, with 98% conversion efficiency in eight minutes under mild conditions. Moreover, the good reusability of the catalytic system has been verified after recycling it ten times without any significant decrease in the performance.