96-22-0Relevant articles and documents
High catalytic activity of silicalite in gas-phase ketonisation of propionic acid
Bayahia, Hossein,Kozhevnikova, Elena,Kozhevnikov, Ivan
, p. 3842 - 3844 (2013)
Amorphous silica and crystalline silicalite (MFI structure) are demonstrated to be active and environmentally benign catalysts for propionic acid ketonisation at 450-500 °C to form 3-pentanone. The silicalite is particularly efficient, and its ketonisation selectivity is increased by base modification probably through generation of silanol nests.
Synthesis, crystal structure and catalytic activity of ruthenium(II) carbonyl complexes containing ONO and ONS donor ligands
Ulaganatha Raja,Gowri,Ramesh
, p. 1175 - 1181 (2010)
Diamagnetic ruthenium(II) complexes of the type [Ru(L)(CO)(B)(EPh3)] [where E = As, B = AsPh3; E = P, B = PPh3, py (or) pip and L = dibasic tridentate ligands dehydroacetic acid semicarbazone (abbreviated as dhasc) or dehydroacetic acid phenyl thiosemicarbazone (abbreviated as dhaptsc)] were synthesized from the reaction of [RuHCl(CO)(B)(EPh3)2] (where E = As, B = AsPh3; E = P, B = PPh3, py (or) pip) with different tridentate chelating ligands derived from dehydroacetic acid with semicarbazide or phenylthiosemicarbazide. All the complexes have been characterized by elemental analysis, FT-IR, UV-Vis and 1H NMR spectral methods. The coordination mode of the ligands and the geometry of the complexes were confirmed by single crystal X-ray crystallography of one of the complexes [Ru(dhaptsc)(CO)(PPh3)2] (5). All the complexes are redox active and are monitored by cyclic voltammetric technique. Further, the catalytic efficiency of one of the ruthenium complexes (5) was determined in the case of oxidation of primary and secondary alcohols into their corresponding aldehydes and ketones in the presence of N-methylmorpholine-N-oxide.
Production of renewable 1,3-pentadiene over LaPO4 via dehydration of 2,3-pentanediol derived from 2,3-pentanedione
Bai, Chenxi,Cui, Long,Dai, Quanquan,Feng, Ruilin,Liu, Shijun,Qi, Yanlong
, (2022/02/07)
1,3-Pentadiene plays an extremely important role in the production of polymers and fine chemicals. Herein, the LaPO4 catalyst exhibits excellent catalytic performance for the dehydration production of 1,3-pentadiene with 2,3-pentanediol, a C5 diol platform compound that can be easily obtained by hydrogenation of bio-based 2,3-pentanedione. The relationships of catalyst structure-acid/base properties-catalytic performance was established, and an acid-base synergy effect was disclosed for the on-purpose synthesis of 1,3-pentadiene. Thus, a balance between acid and base sites was required, and an optimized LaPO4 with acid/base ratio of 2.63 afforded a yield of 1,3-pentadiene as high as 61.5% at atmospheric pressure. Notably, the Br?nsted acid sites with weak or medium in LaPO4 catalyst can inhibit the occurrence of pinacol rearrangement, resulting in higher 1,3-pentadiene production. In addition, the investigation on reaction pathways demonstrated that the E2 mechanism was dominant in this dehydration reaction, accompanied by the assistance of E1 and E1cb.
CeO2 Facet-Dependent Surface Reactive Intermediates and Activity during Ketonization of Propionic Acid
Guo, Yonghua,Qin, Yuyao,Liu, Huixian,Wang, Hua,Han, Jinyu,Zhu, Xinli,Ge, Qingfeng
, p. 2998 - 3012 (2022/03/03)
CeO2 rods, octahedrons, and cubes exposing well-defined (110), (111), and (100) surfaces, respectively, were synthesized and investigated for the catalytic ketonization of propionic acid. The intrinsic ketonization rates at 350 °C on the rods, octahedrons, and cubes are 54.3, 40.4, and 25.1 mmol·m-2·h-1, respectively, indicating that the (110) facet is the most active surface for ketonization. The reaction was tracked by both in situ infrared and mass spectroscopies under transient conditions, and the results showed that monodentate propionate, a minority surface species, is responsible for the formation of 3-pentanone. In contrast, bidentate propionate, a dominant species on all three surfaces, appears to a spectator for ketonization. Moreover, the ketonization activity can be correlated with relative concentration of monodentate propionate. A density functional theory study showed that the relative concentration of monodentate propionate (or the adsorption energy difference between monodentate and bidentate configurations) at high coverages is strongly dependent on the surface geometry. The stability of monodentate propionate on the (110) surface exposing both the O and Ce sites in the outermost layer with the well-separated Ce sites exhibits little dependence on the propionate coverage. In contrast, strong steric hindrance due to the top layer O atom and the closely packed Ce atoms in (111) destabilizes monodentate propionate significantly at high coverages. This study demonstrates that the surface geometrical structure of CeO2 can determine the abundance of the active monodentate propionate, which, in turn, will determine the catalytic activity of CeO2 for ketonization.
Synthesis of Chiral Amines via a Bi-Enzymatic Cascade Using an Ene-Reductase and Amine Dehydrogenase
Fossey-Jouenne, Aurélie,Jongkind, Ewald P. J.,Mayol, Ombeline,Paul, Caroline E.,Vergne-Vaxelaire, Carine,Zaparucha, Anne
, (2021/12/23)
Access to chiral amines with more than one stereocentre remains challenging, although an increasing number of methods are emerging. Here we developed a proof-of-concept bi-enzymatic cascade, consisting of an ene reductase and amine dehydrogenase (AmDH), to afford chiral diastereomerically enriched amines in one pot. The asymmetric reduction of unsaturated ketones and aldehydes by ene reductases from the Old Yellow Enzyme family (OYE) was adapted to reaction conditions for the reductive amination by amine dehydrogenases. By studying the substrate profiles of both reported biocatalysts, thirteen unsaturated carbonyl substrates were assayed against the best duo OYE/AmDH. Low (5 %) to high (97 %) conversion rates were obtained with enantiomeric and diastereomeric excess of up to 99 %. We expect our established bi-enzymatic cascade to allow access to chiral amines with both high enantiomeric and diastereomeric excess from varying alkene substrates depending on the combination of enzymes.
Palladium mediated one-pot synthesis of 3-aryl-cyclohexenones and 1,5-diketones from allyl alcohols and aryl ketones
Samser, Shaikh,Biswal, Priyabrata,Meher, Sushanta Kumar,Venkatasubbaiah, Krishnan
, p. 1386 - 1394 (2021/02/27)
One-pot synthesis of Robinson annulated 3-aryl-cyclohexenones from allyl alcohols and ketones using palladium is reported. Long chain aliphatic or aryl substitutions at the C1 position of allyl alcohol result in the formation of 1,5-diketone products. This simple one-pot method avoids the use of highly electrophilic vinyl ketones.
Merging N-Hydroxyphthalimide into Metal-Organic Frameworks for Highly Efficient and Environmentally Benign Aerobic Oxidation
Wang, Man,Liang, Gan,Wang, Yunhao,Fan, Tao,Yuan, Baoling,Liu, Mingxian,Yin, Ying,Li, Liangchun
supporting information, p. 9674 - 9685 (2021/06/09)
Two highly efficient metal-organic framework catalysts TJU-68-NHPI and TJU-68-NDHPI have been successfully synthesized through solvothermal reactions of which the frameworks are merged with N-hydroxyphthalimide (NHPI) units, resulting in the decoration of pore surfaces with highly active nitroxyl catalytic sites. When t-butyl nitrite (TBN) is used as co-catalyst, the as-synthesized MOFs are demonstrated to be highly efficient and recyclable catalysts for a novel three-phase heterogeneous oxidation of activated C?H bond of primary and secondary alcohols, and benzyl compounds under mild conditions. Based on the high efficiency and selectivity, an environmentally benign system with good sustainability, mild conditions, simple work-up procedure has been established for practical oxidation of a wide range of substrates.
Chromium-Catalyzed Production of Diols From Olefins
-
Paragraph 0111, (2021/03/19)
Processes for converting an olefin reactant into a diol compound are disclosed, and these processes include the steps of contacting the olefin reactant and a supported chromium catalyst comprising chromium in a hexavalent oxidation state to reduce at least a portion of the supported chromium catalyst to form a reduced chromium catalyst, and hydrolyzing the reduced chromium catalyst to form a reaction product comprising the diol compound. While being contacted, the olefin reactant and the supported chromium catalyst can be irradiated with a light beam at a wavelength in the UV-visible spectrum. Optionally, these processes can further comprise a step of calcining at least a portion of the reduced chromium catalyst to regenerate the supported chromium catalyst.
Fast Addition of s-Block Organometallic Reagents to CO2-Derived Cyclic Carbonates at Room Temperature, Under Air, and in 2-Methyltetrahydrofuran
Elorriaga, David,de la Cruz-Martínez, Felipe,Rodríguez-álvarez, María Jesús,Lara-Sánchez, Agustín,Castro-Osma, José Antonio,García-álvarez, Joaquín
, p. 2084 - 2092 (2021/04/02)
Fast addition of highly polar organometallic reagents (RMgX/RLi) to cyclic carbonates (derived from CO2 as a sustainable C1 synthon) has been studied in 2-methyltetrahydrofuran as a green reaction medium or in the absence of external volatile organic solvents, at room temperature, and in the presence of air/moisture. These reaction conditions are generally forbidden with these highly reactive main-group organometallic compounds. The correct stoichiometry and nature of the polar organometallic alkylating or arylating reagent allows straightforward synthesis of: highly substituted tertiary alcohols, β-hydroxy esters, or symmetric ketones, working always under air and at room temperature. Finally, an unprecedented one-pot/two-step hybrid protocol is developed through combination of an Al-catalyzed cycloaddition of CO2 and propylene oxide with the concomitant fast addition of RLi reagents to the in situ and transiently formed cyclic carbonate, thus allowing indirect conversion of CO2 into the desired highly substituted tertiary alcohols without need for isolation or purification of any reaction intermediates.
Manganese-Mediated C-C Bond Formation: Alkoxycarbonylation of Organoboranes
Van Putten, Robbert,Filonenko, Georgy A.,Krieger, Annika M.,Lutz, Martin,Pidko, Evgeny A.
supporting information, p. 674 - 681 (2021/04/02)
Alkoxycarbonylations are important and versatile reactions that result in the formation of a new C-C bond. Herein, we report on a new and halide-free alkoxycarbonylation reaction that does not require the application of an external carbon monoxide atmosphere. Instead, manganese carbonyl complexes and organo(alkoxy)borate salts react to form an ester product containing the target C-C bond. The required organo(alkoxy)borate salts are conveniently generated from the stoichiometric reaction of an organoborane and an alkoxide salt and can be telescoped without purification. The protocol leads to the formation of both aromatic and aliphatic esters and gives complete control over the ester's substitution (e.g., OMe, OtBu, OPh). A reaction mechanism was proposed on the basis of stoichiometric reactivity studies, spectroscopy, and DFT calculations. The new chemistry is particularly relevant for the field of Mn(I) catalysis and clearly points to a potential pathway toward irreversible catalyst deactivation.