96-47-9Relevant articles and documents
Organic modifiers promote furfuryl alcohol ring hydrogenation via surface hydrogen-bonding interactions
Coan, Patrick D.,Farberow, Carrie A.,Griffin, Michael B.,Medlin, J. Will
, p. 3730 - 3739 (2021)
Interactions between surface adsorbed species can affect catalyst reactivity, and thus, the ability to tune these interactions is of considerable importance. Deposition of organic modifiers provides one method of intentionally introducing controllable surface interactions onto catalyst surfaces. In this study, Pd/Al2O3 catalysts were modified with either thiol or phosphonic acid (PA) ligands and tested in the hydrogenation of furanic species. The thiol modifiers were found to inhibit ring hydrogenation (RH) activity, with the degree of inhibition trending with the thiol surface coverage. This suggests that thiols do not strongly interact with the reactants and simply serve to block active sites on the Pd surface. PAs, on the other hand, were found to enhance RH when furfuryl alcohol (FA) was used as the reactant. Density functional theory calculations suggested that this enhancement was due to hydrogen-bonding interactions between FA-derived surface intermediates and PA modifiers. Here, installation of hydrogen-bonding groups on the Pd surface served to preferentially stabilize RH product states. Furthermore, the promotional effect on the RH of FA was observed to be greater when a higher-coverage PA was used, providing a rate more than twice that of the unmodified Pd/Al2O3. The results of this work suggest that organic ligands can be designed to impart tunable surface interactions on heterogeneous catalysts, providing an additional method of controlling catalytic performance.
Alkoxyl radicals from alcohols. Spectroscopic detection of intermediate alkyl and acyl hypoiodites in the Suarez and Beebe reactions
Courtneidge,Lusztyk,Page
, p. 1003 - 1006 (1994)
Acetyl hypoiodite and a number of alkyl hypoiodites have been characterized as intermediates in the conversion of alcohols into alkoxyl radicals under Suarez (photostimulated iodosobenzenediactetate/iodine reagent) and Beebe (photolysed acetyl hypoiodite/alcohol) conditions.
Platinum Single Atoms on Carbon Nanotubes as Efficient Catalyst for Hydroalkoxylation
Woo, Hyunje,Lee, Eun-Kyung,Yun, Su-Won,Park, Shin-Ae,Park, Kang Hyun,Kim, Yong-Tae
, p. 1221 - 1225 (2017)
We report a facile synthesis of Pt single atoms on thiolated carbon nanotubes. To obtain Pt single atoms, it is crucial to treat thiol groups on carbon nanotubes. Pt single atoms on carbon nanotubes were used efficient catalyst for hydroalkoxylation of 3-buten-1-ol or 4-penten-1-ol. Hydroalkoxylation represents an atom-economic route to construct four or five- membered cyclic ethers through intramolecular addition of hydroxyl group. This catalyst exhibited higher catalytic activity than Pt complex and Pt nanoparticles on carbon nanotubes.
Solvent effect on the rate and direction of furfural transformations during hydrogenation over the Pd/C catalyst
Belskaya, O. B.,Likholobov, V. A.,Mironenko, R. M.
, p. 64 - 69 (2022/02/25)
The rate and directions of transformations during the liquid-phase hydrogenation of furfural with molecular hydrogen in the presence of the 5%Pd/C catalyst (at 423 K, 3 MPa) depend substantially on the chemical nature of the solvent. The main products of
One-pot self-assembly synthesis of Ni-doped ordered mesoporous carbon for quantitative hydrogenation of furfural to furfuryl alcohol
Tang, Yiwei,Qiu, Mo,Yang, Jirui,Shen, Feng,Wang, Xiaoqi,Qi, Xinhua
, p. 1861 - 1870 (2021/03/09)
Ni-Doped ordered mesoporous carbon (Ni@OMC) was prepared by a one-pot solvent evaporation-induced self-assembly (EISA) process with sustainable biomass-derived gallic acid as the carbon precursor, F127 as the soft template and Ni2+as the cross-linker and catalytically active ingredient. Ni particles withca.7.8 nm diameter were uniformly dispersed in the carbon skeleton of the synthesized OMC due to the confinement effects of Ni particles in the carbon skeleton of OMC by coordination between gallic acid molecules and metal Ni2+ions in the EISA process. The as-synthesized Ni@OMC sample showed excellent catalytic performance for the hydrogenation of biomass-derived furfural into furfuryl alcohol (FFA), and a FFA yield as high as 98% could be achieved at 180 °C in 4 h reaction time in 1-propanol solvent in the presence of 3 MPa H2pressure. The prepared Ni@OMC exhibited good stability and recyclability. This work provides a green and simple one-pot strategy for the synthesis of metal-doped OMCs without using harmful phenolic and formaldehyde compounds, which should have many applications in fields such as catalysis, drug delivery and energy storage.
The relevance of Lewis acid sites on the gas phase reaction of levulinic acid into ethyl valerate using CoSBA-xAl bifunctional catalysts
Cecilia, J. A.,Dumesic, J. A.,Jiménez-Gómez, C. P.,López Granados, M.,Maireles-Torres, P.,Mariscal, R.,Mu?oz-Olasagasti, M.
, p. 4280 - 4293 (2021/06/30)
A series of Co supported on Al-modified SBA-15 catalysts has been studied in the gas phase direct transformation of levulinic acid (LA) into ethyl valerate (EV) using a continuous fixed-bed reactor and ethanol as solvent. It was observed that once the intermediate product gamma-valerolactone (GVL) has been formed, the presence of aluminum is required for the selective transformation to EV. Three Lewis acid sites (LAS) are identified (from highest to lowest acid strength): aluminum ions in tetrahedral and octahedral coordination and Co2+sites. The intrinsic activity of these LAS for the key reaction, the GVL ring opening, decreases with the strength of these acid sites, but so does the undesirable formation of coke, also catalyzed by these centers. The best catalyst was that with the highest Al content, CoSBA-2.5Al, that reached an EV yield of up to 70%. This result is associated with the presence of LAS attributed to the presence of Co2+surface species that, although having low intrinsic activity in the selective GVL ring-opening reaction, are highly concentrated in this sample and also possess less activity in the undesirable and deactivating formation of coke. These Co2+LAS have been stabilized by incorporation of aluminum into the support, modifying the reducibility and dispersion of cobalt species. Additionally, the lower proportion of metallic Co species decreases the hydrogenating capacity of this catalyst. This decrease is a positive result because it prevents GVL hydrogenation to undesired products. This catalyst also showed promising stability in a 140 h on-stream run.
Unravelling the one-pot conversion of biomass-derived furfural and levulinic acid to 1,4-pentanediol catalysed by supported RANEY Ni-Sn alloy catalysts
Ansyah, Fathur Razi,Astuti, Maria Dewi,Hara, Takayoshi,Husain, Sadang,Mustikasari, Kamilia,Rodiansono,Shimazu, Shogo
, p. 241 - 250 (2022/01/19)
Bimetallic Ni-Sn alloys have been recognised as promising catalysts for the transformation of furanic compounds and their derivatives into valuable chemicals. Herein, we report the utilisation of a supported bimetallic RANEY nickel-tin alloy supported on aluminium hydroxide (RNi-Sn(x)/AlOH; x is Ni/Sn molar ratio) catalysts for the one-pot conversion of biomass-derived furfural and levulinic acid to 1,4-pentanediol (1,4-PeD). The as prepared RNi-Sn(1.4)/AlOH catalyst exhibited the highest yield of 1,4-PeD (78%). The reduction of RNi-Sn(x)/AlOH with H2 at 673-873 K for 1.5 h resulted in the formation of Ni-Sn alloy phases (e.g., Ni3Sn and Ni3Sn2) and caused the transformation of aluminium hydroxide (AlOH) to amorphous alumina (AA). The RNi-Sn(1.4)/AA 673 K/H2 catalyst contained a Ni3Sn2 alloy as the major phase, which exhibited the best yield of 1,4-PeD from furfural (87%) at 433 K, H2 3.0 MPa for 12 h and from levulinic acid (up to 90%) at 503 K, H2 4.0 MPa, for 12 h. Supported RANEY Ni-Sn(1.5)/AC and three types of supported Ni-Sn(1.5) alloy (e.g., Ni-Sn(1.5)/AC, Ni-Sn(1.5)/c-AlOH, and Ni-Sn(1.5)/γ-Al2O3) catalysts afforded high yields of 1,4-PeD (65-87%) both from furfural and levulinic acid under the optimised reaction conditions.
Furfural hydrodeoxygenation (HDO) over silica-supported metal phosphides – The influence of metal–phosphorus stoichiometry on catalytic properties
Lan, Xuefang,Pestman, Robert,Hensen, Emiel J.M.,Weber, Thomas
, p. 181 - 193 (2021/02/27)
The gas-phase hydrodeoxygenation (HDO) of furfural, a model compound for bio-based conversion, was investigated over transition metal phosphide catalysts. The HDO activity decreases in the order Ni2P ≈ MoP > Co2P ≈ WP ? Cu3P > Fe2P. Nickel phosphide phases (e.g., Ni2P, Ni12P5, Ni3P) are the most promising catalysts in the furfural HDO. Their selectivity to the gasoline additives 2-methylfuran and tetrahydro-2-methylfuran can be adjusted by varying the P/Ni ratio. The effect of P on catalyst properties as well as on the reaction mechanism of furfural HDO were investigated in depth for the first time. An increase of the P stoichiometry weakens the furan-ring/catalyst interaction, which contributes to a lower ring-opening and ring-hydrogenation activity. On the other hand, an increasing P content does lead to a stronger carbonyl/catalyst interaction, i.e., to a stronger η2(C, O) adsorption configuration, which weakens the C1[sbnd]O1 bond (Scheme 1) in the carbonyl group and enhances the carbonyl conversion. Phosphorus species can also act as Br?nsted acid sites promoting C1[sbnd]O1 (Scheme 1) hydrogenolysis of furfuryl alcohol, hence contributing to higher production of 2-methylfuran.
Conversion of furfural to 2-methylfuran over CuNi catalysts supported on biobased carbon foams
Varila, Toni,M?kel?, Eveliina,Kupila, Riikka,Romar, Henrik,Hu, Tao,Karinen, Reetta,Puurunen, Riikka L.,Lassi, Ulla
, p. 16 - 27 (2020/12/28)
In this study, carbon foams prepared from the by-products of the Finnish forest industry, such as tannic acid and pine bark extracts, were examined as supports for 5/5% Cu/Ni catalysts in the hydrotreatment of furfural to 2-methylfuran (MF). Experiments were conducted in a batch reactor at 503 K and 40 bar H2. Prior to metal impregnation, the carbon foam from tannic acid was activated with steam (S1), and the carbon foam from pine bark extracts was activated with ZnCl2 (S2) and washed with acids (HNO3 or H2SO4). For comparison, a spruce-based activated carbon (AC) catalyst and two commercial AC catalysts as references were investigated. Compressive strength of the foam S2 was 30 times greater than that of S1. The highest MF selectivity of the foam-supported catalysts was 48 % (S2, washed with HNO3) at a conversion of 91 %. According to the results, carbon foams prepared from pine bark extracts can be applied as catalyst supports.
Support Effect of Ru Catalysts for Efficient Conversion of Biomass-Derived 2,5-Hexanedione to Different Products
Hua, Manli,Song, Jinliang,Huang, Xin,Hou, Minqiang,Fan, Honglei,Zhang, Zhaofu,Wu, Tianbin,Han, Buxing
, p. 7685 - 7693 (2021/06/30)
Tuning the activity of supported metals by changing the properties of supports is a highly attractive strategy to realize some important reactions in biomass transformation. Herein, Ru nanoparticles supported on montmorillonite (MMT) and hydroxyapatite (HAP), denoted as Ru/MMT and Ru/HAP, were prepared. It was found that the activity of the Ru catalysts for different routes to convert biomass-derived 2,5-hexanedione (2,5-HD) could be controlled by the support materials. Ru/MMT was active for the synthesis of dimethyltetrahydrofuran from hydrogenation of 2,5-HD at 90 °C, while Ru/HAP showed excellent performance on the conversion of 2,5-HD into N-substituted tetrahydropyrroles at 30 °C via direct reductive amination. Systematic study revealed that the property of support materials influenced the activity of Ru/MMT and Ru/HAP for the different routes, affording different reaction pathways for conversion of 2,5-HD.