Welcome to LookChem.com Sign In|Join Free

CAS

  • or
1,1,2,2-Tetrach loroethylene, also known as perchloroethylene, is a colorless liquid with a sweet odor that is widely recognized for its solvent properties. It is a versatile chemical compound with a range of applications across various industries, despite being classified as a hazardous substance due to its potential health and environmental risks.

127-18-4 Suppliers

Post Buying Request

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier
  • 127-18-4 Structure
  • Basic information

    1. Product Name: 1,1,2,2-Tetrach loroethylene
    2. Synonyms: Ethene,tetrachloro- (9CI);Ethylene, tetrachloro- (8CI);1,1,2,2-Tetrachloroethene;Ankilostin;Antisal 1;Asahi Perchlor;Didakene;Dilatin PT;Ethylene tetrachloride;F 1110;F 1110 (halocarbon);Fedal-Un;Freon 1110;NSC 9777;Nema;PCE;PCE (chlorohydrocarbon);PerSec;Perchlorethylene;Perchloroethylene;Perclene;Perklone;PersaP 3;R 1110;Tetlen;Tetracap;Tetraguer;Tetraleno;Tetropil;
    3. CAS NO:127-18-4
    4. Molecular Formula: C2Cl4
    5. Molecular Weight: 165.8334
    6. EINECS: 204-825-9
    7. Product Categories: N/A
    8. Mol File: 127-18-4.mol
  • Chemical Properties

    1. Melting Point: -22℃
    2. Boiling Point: 119.1 °C at 760 mmHg
    3. Flash Point: 27.4 °C
    4. Appearance: colourless liquid with ether-like odour
    5. Density: 1.653 g/cm3
    6. Vapor Pressure: 19.3mmHg at 25°C
    7. Refractive Index: 1.519
    8. Storage Temp.: N/A
    9. Solubility: N/A
    10. CAS DataBase Reference: 1,1,2,2-Tetrach loroethylene(CAS DataBase Reference)
    11. NIST Chemistry Reference: 1,1,2,2-Tetrach loroethylene(127-18-4)
    12. EPA Substance Registry System: 1,1,2,2-Tetrach loroethylene(127-18-4)
  • Safety Data

    1. Hazard Codes:  Xn:Harmful;
    2. Statements: R40:; R51/53:;
    3. Safety Statements: S23:; S36/37:; S61:;
    4. RIDADR: 1897
    5. WGK Germany:
    6. RTECS:
    7. HazardClass: 6.1
    8. PackingGroup: III
    9. Hazardous Substances Data: 127-18-4(Hazardous Substances Data)

127-18-4 Usage

Uses

Used in Dry Cleaning Industry:
1,1,2,2-Tetrach loroethylene is used as a solvent for its ability to effectively remove grease and oil stains from fabrics. Its chemical stability and solvency power make it a preferred choice in the dry cleaning process, ensuring clean and well-maintained textiles.
Used in Metal Degreasing Applications:
In the metalworking industry, 1,1,2,2-Tetrach loroethylene is utilized as a degreasing agent to clean metal surfaces by dissolving various types of oils and contaminants. This is crucial for maintaining the quality and performance of metal components in mechanical assemblies and systems.
Used in Chemical Production:
1,1,2,2-Tetrach loroethylene is employed as an intermediate in the synthesis of other chemicals, contributing to the manufacturing of a variety of chemical products that serve different purposes in various sectors.
Used in Fluorocarbon Synthesis:
As an intermediate, 1,1,2,2-Tetrach loroethylene plays a role in the production of fluorocarbons, which have unique properties such as chemical stability and non-flammability, making them suitable for specialized applications like refrigerants and fire suppressants.
However, due to its status as a known carcinogen and its potential to cause damage to the liver, kidneys, and central nervous system, as well as its environmental persistence and aquatic toxicity, the use of 1,1,2,2-Tetrach loroethylene necessitates strict adherence to safety protocols and proper handling and disposal methods to mitigate its impact on human health and the environment.

Check Digit Verification of cas no

The CAS Registry Mumber 127-18-4 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 1,2 and 7 respectively; the second part has 2 digits, 1 and 8 respectively.
Calculate Digit Verification of CAS Registry Number 127-18:
(5*1)+(4*2)+(3*7)+(2*1)+(1*8)=44
44 % 10 = 4
So 127-18-4 is a valid CAS Registry Number.

127-18-4 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Alfa Aesar

  • (32437)  Tetrachloroethylene, Ultrapure, Spectrophotometric Grade, 99+%   

  • 127-18-4

  • 1L

  • 926.0CNY

  • Detail
  • Alfa Aesar

  • (32437)  Tetrachloroethylene, Ultrapure, Spectrophotometric Grade, 99+%   

  • 127-18-4

  • 4L

  • 2732.0CNY

  • Detail
  • Alfa Aesar

  • (32437)  Tetrachloroethylene, Ultrapure, Spectrophotometric Grade, 99+%   

  • 127-18-4

  • *4x1L

  • 3288.0CNY

  • Detail
  • Alfa Aesar

  • (B20089)  Tetrachloroethylene, 99%   

  • 127-18-4

  • 100ml

  • 142.0CNY

  • Detail
  • Alfa Aesar

  • (B20089)  Tetrachloroethylene, 99%   

  • 127-18-4

  • 500ml

  • 310.0CNY

  • Detail
  • Alfa Aesar

  • (B20089)  Tetrachloroethylene, 99%   

  • 127-18-4

  • 2500ml

  • 456.0CNY

  • Detail
  • Supelco

  • (48609)  Tetrachloroethylenesolution  certified reference material, 200 μg/mL in methanol

  • 127-18-4

  • 000000000000048609

  • 207.09CNY

  • Detail
  • Supelco

  • (40083)  Tetrachloroethylenesolution  certified reference material, 5000 μg/mL in methanol

  • 127-18-4

  • 000000000000040083

  • 400.14CNY

  • Detail
  • Sigma-Aldrich

  • (15889)  DensityStandard1623kg/m3  H&D Fitzgerald Ltd. Quality

  • 127-18-4

  • 15889-10ML-F

  • 2,341.17CNY

  • Detail

127-18-4SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 12, 2017

Revision Date: Aug 12, 2017

1.Identification

1.1 GHS Product identifier

Product name tetrachloroethene

1.2 Other means of identification

Product number -
Other names TETRACHLORO ETHYLENE

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:127-18-4 SDS

127-18-4Synthetic route

N-(2,2,2-trichloroethylidene)benzenesulfonamide
55596-11-7

N-(2,2,2-trichloroethylidene)benzenesulfonamide

complex of sulfur dioxide with dimethylamine
21326-49-8

complex of sulfur dioxide with dimethylamine

A

1,1,2,2-tetrachloroethylene
127-18-4

1,1,2,2-tetrachloroethylene

B

chloroform
67-66-3

chloroform

C

N,N-dimethyl-N′-(phenylsulfonyl)formimidamide
13707-43-2

N,N-dimethyl-N′-(phenylsulfonyl)formimidamide

Conditions
ConditionsYield
In dichloromethane at 20℃; for 24h;A n/a
B n/a
C 98%
N-(2,2,2-trichloroethylidene)benzenesulfonamide
55596-11-7

N-(2,2,2-trichloroethylidene)benzenesulfonamide

diethylamine
109-89-7

diethylamine

A

1,1,2,2-tetrachloroethylene
127-18-4

1,1,2,2-tetrachloroethylene

B

chloroform
67-66-3

chloroform

C

N1,N1-diethyl-N2-phenylsulfonylformamidine
29665-24-5

N1,N1-diethyl-N2-phenylsulfonylformamidine

Conditions
ConditionsYield
In dichloromethane at 0℃; for 24h;A n/a
B n/a
C 98%
hexachloroethane
67-72-1

hexachloroethane

1,1,2,2-tetrachloroethylene
127-18-4

1,1,2,2-tetrachloroethylene

Conditions
ConditionsYield
In tetrachloromethane at 300℃; for 0.000555556h; Temperature; Flow reactor; Pyrolysis;97%
at 600℃;
With pyrographite at 700℃;
Hexachlorobutadiene
87-68-3

Hexachlorobutadiene

1,1,2,2-tetrachloroethylene
127-18-4

1,1,2,2-tetrachloroethylene

Conditions
ConditionsYield
With aluminum (III) chloride; chlorine at 280 - 750℃; Temperature;95%
N-(2,2,2-trichloroethylidene)benzenesulfonamide
55596-11-7

N-(2,2,2-trichloroethylidene)benzenesulfonamide

dimethyl amine
124-40-3

dimethyl amine

A

1,1,2,2-tetrachloroethylene
127-18-4

1,1,2,2-tetrachloroethylene

B

chloroform
67-66-3

chloroform

C

N,N-dimethyl-N′-(phenylsulfonyl)formimidamide
13707-43-2

N,N-dimethyl-N′-(phenylsulfonyl)formimidamide

Conditions
ConditionsYield
In dichloromethane at 20℃; for 24h;A n/a
B n/a
C 92%
N-(2,2,2-trichloroethylidene)benzenesulfonamide
55596-11-7

N-(2,2,2-trichloroethylidene)benzenesulfonamide

complex of sulfur dioxide with dimethylamine
21326-49-8

complex of sulfur dioxide with dimethylamine

A

1,1,2,2-tetrachloroethylene
127-18-4

1,1,2,2-tetrachloroethylene

B

chloroform
67-66-3

chloroform

C

N-Phenylsulfonyl-N,N'-dimethylformamidine hydrochloride

N-Phenylsulfonyl-N,N'-dimethylformamidine hydrochloride

Conditions
ConditionsYield
In Trichloroethylene at 20℃; for 24h;A n/a
B n/a
C 89%
octachloro-cyclobutane
7294-43-1

octachloro-cyclobutane

A

1,1,2,2-tetrachloroethylene
127-18-4

1,1,2,2-tetrachloroethylene

B

Hexachlorobutadiene
87-68-3

Hexachlorobutadiene

C

hexachlorocyclobutene
6130-82-1

hexachlorocyclobutene

Conditions
ConditionsYield
at 506℃; Product distribution;A 0.3%
B 86%
C 1.2%
tetrachloromethane
56-23-5

tetrachloromethane

A

1,1,2,2-tetrachloroethylene
127-18-4

1,1,2,2-tetrachloroethylene

B

methane
34557-54-5

methane

C

chloroform
67-66-3

chloroform

D

carbon monoxide
201230-82-2

carbon monoxide

Conditions
ConditionsYield
With iron(II,III) oxide; sodium chloride at 25℃; pH=8.9; Kinetics;A 0.01%
B 1%
C 5.2%
D 82%
With hydroxysulfate green rust In water at 20℃; for 575h; pH=7.6; Product distribution;
pentachloroethane
76-01-7

pentachloroethane

1,1,2,2-tetrachloroethylene
127-18-4

1,1,2,2-tetrachloroethylene

Conditions
ConditionsYield
With methyl diethylphosphinate at 150℃; for 10h;75%
With chlorine at 379.84℃; Gas phase; chemoselective reaction;33.8%
With nickel dichloride at 330℃;
1,1,2,2-tetrachloroethane
79-34-5

1,1,2,2-tetrachloroethane

A

1,1,2,2-tetrachloroethylene
127-18-4

1,1,2,2-tetrachloroethylene

B

Trichloroethylene
79-01-6

Trichloroethylene

Conditions
ConditionsYield
With hydrogenchloride; oxygen at 379.84℃; for 18h;A 20.8%
B 64.3%
With CuCl2/KCl/attapulgite; chlorine at 379.84℃; Gas phase; chemoselective reaction;A 16.6%
B 45%
1,1,2,2-tetrachloroethane
79-34-5

1,1,2,2-tetrachloroethane

A

1,1,2,2-tetrachloroethylene
127-18-4

1,1,2,2-tetrachloroethylene

B

Trichloroethylene
79-01-6

Trichloroethylene

C

pentachloroethane
76-01-7

pentachloroethane

Conditions
ConditionsYield
With hydrogenchloride; oxygen at 379.84℃;A 20.8%
B 64.3%
C 6.1%
N,N-Dichlorobenzenesulfonamide
473-29-0

N,N-Dichlorobenzenesulfonamide

1,2-Dichloroethylene
540-59-0

1,2-Dichloroethylene

A

benzenesulfonamide
98-10-2

benzenesulfonamide

B

1,1,2,2-tetrachloroethylene
127-18-4

1,1,2,2-tetrachloroethylene

C

Trichloroethylene
79-01-6

Trichloroethylene

D

N-(2,2,2-trichloroethylidene)benzenesulfonamide
55596-11-7

N-(2,2,2-trichloroethylidene)benzenesulfonamide

E

N-(2,2-dichloroethylidene)benzenesulfonamide
113791-97-2

N-(2,2-dichloroethylidene)benzenesulfonamide

F

N-{2,2-dichloro-1-[(phenylsulfonyl)amino]ethyl}benzenesulfonamide
79054-58-3

N-{2,2-dichloro-1-[(phenylsulfonyl)amino]ethyl}benzenesulfonamide

Conditions
ConditionsYield
at 55℃; for 22h; Product distribution; other time, other temperature, other initiator;A n/a
B n/a
C n/a
D n/a
E n/a
F 54.1%
N,N-Dichlorobenzenesulfonamide
473-29-0

N,N-Dichlorobenzenesulfonamide

1,2-Dichloroethylene
540-59-0

1,2-Dichloroethylene

A

1,1,2,2-tetrachloroethylene
127-18-4

1,1,2,2-tetrachloroethylene

B

Trichloroethylene
79-01-6

Trichloroethylene

C

N-(2,2,2-trichloroethylidene)benzenesulfonamide
55596-11-7

N-(2,2,2-trichloroethylidene)benzenesulfonamide

D

N-(2,2-dichloroethylidene)benzenesulfonamide
113791-97-2

N-(2,2-dichloroethylidene)benzenesulfonamide

E

N-{2,2-dichloro-1-[(phenylsulfonyl)amino]ethyl}benzenesulfonamide
79054-58-3

N-{2,2-dichloro-1-[(phenylsulfonyl)amino]ethyl}benzenesulfonamide

F

1,1,2,2-tetrachloroethane
79-34-5

1,1,2,2-tetrachloroethane

Conditions
ConditionsYield
at 55℃; for 22h; Product distribution; other time, other temperature, other initiator;A n/a
B n/a
C n/a
D n/a
E 54.1%
F n/a
hexachloroethane
67-72-1

hexachloroethane

Ce(3+)*3C4H14NSi2(1-)*2C4H8O

Ce(3+)*3C4H14NSi2(1-)*2C4H8O

A

1,1,2,2-tetrachloroethylene
127-18-4

1,1,2,2-tetrachloroethylene

B

tetramethyldisilazane

tetramethyldisilazane

Conditions
ConditionsYield
In toluene for 18h; Reagent/catalyst; Solvent; Time; Inert atmosphere;A n/a
B 45%
1,2-Dichloroethylene
540-59-0

1,2-Dichloroethylene

N,N-dichloro-4-chlorobenzenesulfonamide
17260-65-0

N,N-dichloro-4-chlorobenzenesulfonamide

A

1,1,2,2-tetrachloroethylene
127-18-4

1,1,2,2-tetrachloroethylene

B

4-Chlorobenzenesulfonamide
98-64-6

4-Chlorobenzenesulfonamide

C

N-(2,2,2-trichloroethylidene)-4-chlorobenzenesulfonamide
81924-15-4

N-(2,2,2-trichloroethylidene)-4-chlorobenzenesulfonamide

D

N-(2,2-dichloroethylidene)-p-chlorobenzenesulfonamide
113791-98-3

N-(2,2-dichloroethylidene)-p-chlorobenzenesulfonamide

E

N-<2,2-dichloro-1-(N-p-chlorobenzenesulfonamido)ethyl>-p-chlorobenzenesulfonamide
113792-01-1

N-<2,2-dichloro-1-(N-p-chlorobenzenesulfonamido)ethyl>-p-chlorobenzenesulfonamide

F

1,1,2,2-tetrachloroethane
79-34-5

1,1,2,2-tetrachloroethane

Conditions
ConditionsYield
at 55℃; for 22h; Product distribution; other time, other temperature, other initiator;A n/a
B n/a
C n/a
D n/a
E 40.4%
F n/a
(2,2-dichloro-vinyl)-trimethyl-silane
18163-67-2

(2,2-dichloro-vinyl)-trimethyl-silane

A

1,1,2,2-tetrachloroethylene
127-18-4

1,1,2,2-tetrachloroethylene

B

Trichloroethylene
79-01-6

Trichloroethylene

C

Trimethyl-(1,2,2,2-tetrachloro-ethyl)-silane

Trimethyl-(1,2,2,2-tetrachloro-ethyl)-silane

D

Chloromethyl-dimethyl-(1,2,2,2-tetrachloro-ethyl)-silane

Chloromethyl-dimethyl-(1,2,2,2-tetrachloro-ethyl)-silane

Conditions
ConditionsYield
With chlorine for 3h; Further byproducts given;A 1%
B 5%
C 30%
D 33%
With chlorine for 3h; Further byproducts given;A 1%
B 7%
C 30%
D 33%
Trichloroethylene
79-01-6

Trichloroethylene

A

1,1,2,2-tetrachloroethylene
127-18-4

1,1,2,2-tetrachloroethylene

B

pentachloroethane
76-01-7

pentachloroethane

Conditions
ConditionsYield
With chlorine at 379.84℃; Reagent/catalyst; Temperature;A 8.1%
B 11.2%
tetrachloromethane
56-23-5

tetrachloromethane

A

1,1,2,2-tetrachloroethylene
127-18-4

1,1,2,2-tetrachloroethylene

B

hexachloroethane
67-72-1

hexachloroethane

Conditions
ConditionsYield
at 580℃; for 0.00433333h; Rate constant; Mechanism; several condition investigated;A 10.18%
B 2.51%
at 394.5 - 445.3℃; under 83.3 - 161.6 Torr; Kinetics; Equilibrium constant; Thermodynamic data; eq. const. at 696.6 K; ΔH at 298 K;
at 600 - 1500℃;
pentacarbonyl(methoxyphenylmethylene)tungsten(0)
37823-96-4

pentacarbonyl(methoxyphenylmethylene)tungsten(0)

A

1,1,2,2-tetrachloroethylene
127-18-4

1,1,2,2-tetrachloroethylene

B

methylene chloride
74-87-3

methylene chloride

C

dichloromethane
75-09-2

dichloromethane

D

chloroform
67-66-3

chloroform

Conditions
ConditionsYield
In tetrachloromethane byproducts: HCl, Cl2; further products; N2; stirred; gas-chromy., MAS; elem. anal.;A 6.8%
B 2%
C 0.2%
D 3.6%
piperidine
110-89-4

piperidine

tetrachloromethane
56-23-5

tetrachloromethane

pentachloroethane
76-01-7

pentachloroethane

1,1,2,2-tetrachloroethylene
127-18-4

1,1,2,2-tetrachloroethylene

Conditions
ConditionsYield
at 20℃;
tetrachloromethane
56-23-5

tetrachloromethane

Isobutane
75-28-5

Isobutane

hexachloroethane
67-72-1

hexachloroethane

A

1,1,2,2-tetrachloroethylene
127-18-4

1,1,2,2-tetrachloroethylene

B

tertiary butyl chloride
507-20-0

tertiary butyl chloride

Conditions
ConditionsYield
at 140℃;
tetrachloromethane
56-23-5

tetrachloromethane

1,1,2,2-tetrachloroethylene
127-18-4

1,1,2,2-tetrachloroethylene

Conditions
ConditionsYield
Beim Durchleiten durch ein rotgluehendes Rohr;
at 1300 - 1400℃;
With hydrogen
tetrachloromethane
56-23-5

tetrachloromethane

A

1,1,2,2-tetrachloroethylene
127-18-4

1,1,2,2-tetrachloroethylene

B

hexachlorobenzene
118-74-1

hexachlorobenzene

Conditions
ConditionsYield
at 700℃;
propene
187737-37-7

propene

1,1,2,2-tetrachloroethylene
127-18-4

1,1,2,2-tetrachloroethylene

Conditions
ConditionsYield
With tetrachloromethane; chlorine at 800℃;
diethyl ether
60-29-7

diethyl ether

hexachloroethane
67-72-1

hexachloroethane

ethylmagnesium bromide
925-90-6

ethylmagnesium bromide

A

1,1,2,2-tetrachloroethylene
127-18-4

1,1,2,2-tetrachloroethylene

B

1,1,1,2-tetrachoroethane
630-20-6

1,1,1,2-tetrachoroethane

C

pentachloroethane
76-01-7

pentachloroethane

D

1,1,2,2-tetrachloroethane
79-34-5

1,1,2,2-tetrachloroethane

diethyl ether
60-29-7

diethyl ether

hexachloroethane
67-72-1

hexachloroethane

sodium ethanolate
141-52-6

sodium ethanolate

1,1,2,2-tetrachloroethylene
127-18-4

1,1,2,2-tetrachloroethylene

Conditions
ConditionsYield
at 140℃;
diethyl ether
60-29-7

diethyl ether

hexachloroethane
67-72-1

hexachloroethane

phenylmagnesium bromide

phenylmagnesium bromide

A

1,1,2,2-tetrachloroethylene
127-18-4

1,1,2,2-tetrachloroethylene

B

1,1,1,2-tetrachoroethane
630-20-6

1,1,1,2-tetrachoroethane

C

pentachloroethane
76-01-7

pentachloroethane

D

1,1,2,2-tetrachloroethane
79-34-5

1,1,2,2-tetrachloroethane

1,1-dichloroethane
75-34-3

1,1-dichloroethane

1,1,2,2-tetrachloroethylene
127-18-4

1,1,2,2-tetrachloroethylene

Conditions
ConditionsYield
With chlorine; pyrographite at 450℃;
pentachloropropionyl chloride
812-25-9

pentachloropropionyl chloride

A

1,1,2,2-tetrachloroethylene
127-18-4

1,1,2,2-tetrachloroethylene

B

hexachloroethane
67-72-1

hexachloroethane

Conditions
ConditionsYield
With aluminium trichloride at 60℃;
1,1,2,2-tetrachloroethylene
127-18-4

1,1,2,2-tetrachloroethylene

hypofluorous acid trifluoromethyl ester
373-91-1

hypofluorous acid trifluoromethyl ester

1,1,2,2-tetrachloro-1-fluoro-2-trifluoromethoxyethane
136649-69-9

1,1,2,2-tetrachloro-1-fluoro-2-trifluoromethoxyethane

Conditions
ConditionsYield
at 40.6℃;99.5%
at 160 - 195℃; under 750.075 Torr; for 31h;84.3%
1,1,2,2-tetrachloroethylene
127-18-4

1,1,2,2-tetrachloroethylene

5-methyl-1H-2-benzothiopyran-1-one
681141-90-2

5-methyl-1H-2-benzothiopyran-1-one

2aα,8bα-1,1,2,2-tetrachloro-2,2a-dihydro-8-methyl-1H-cyclobuta[c][2]benzothiopyran-4-one

2aα,8bα-1,1,2,2-tetrachloro-2,2a-dihydro-8-methyl-1H-cyclobuta[c][2]benzothiopyran-4-one

Conditions
ConditionsYield
In acetonitrile for 12h; Irradiation;97%
1,1,2,2-tetrachloroethylene
127-18-4

1,1,2,2-tetrachloroethylene

Pd(CN(2,6-(2,6-(i-Pr)2C6H3)2C6H3))2
1182649-23-5

Pd(CN(2,6-(2,6-(i-Pr)2C6H3)2C6H3))2

Pd(η2-C2Cl4)(CN(2,6-(2,6-(i-Pr)2C6H3)2C6H3))2

Pd(η2-C2Cl4)(CN(2,6-(2,6-(i-Pr)2C6H3)2C6H3))2

Conditions
ConditionsYield
In toluene; pentane for 0.25h; Inert atmosphere; Schlenk technique; Glovebox;97%
1,1,2,2-tetrachloroethylene
127-18-4

1,1,2,2-tetrachloroethylene

A

1,1,1-trifluoro-2,2-dichloroethane
306-83-2

1,1,1-trifluoro-2,2-dichloroethane

B

1,1,2-trichloro-2,2-difluoroethane
354-21-2

1,1,2-trichloro-2,2-difluoroethane

C

freon-121
354-14-3

freon-121

D

1,1,1,2-tetrafluoro-2-chloroethane
2837-89-0

1,1,1,2-tetrafluoro-2-chloroethane

Conditions
ConditionsYield
With hydrogen fluoride; antimony(III) fluoride; antimony pentafluoride at 125 - 139℃; under 16351.6 - 18376.8 Torr; for 3.7h;A 92.4%
B 0.9%
C 0.01%
D 0.4%
With hydrogen fluoride; antimony(III) fluoride; antimony pentafluoride at 122 - 140℃; under 17926.8 - 20252 Torr; for 3.6h;A 89.8%
B 0.3%
C 0.08%
D 3.1%
With hydrogen fluoride; antimony(III) fluoride; antimony pentafluoride at 124 - 140℃; under 18001.8 - 19201.9 Torr; for 3.1h;A 87.2%
B 1.1%
C 0.01%
D 0.5%
1,1,2,2-tetrachloroethylene
127-18-4

1,1,2,2-tetrachloroethylene

copper hydroxide
20427-59-2

copper hydroxide

Trimethylenediamine
109-76-2

Trimethylenediamine

Cu2(C10H16N4Cl4)(H2O)4(4+)*4Cl(1-)*8H2O = [Cu2(C10H16N4Cl4)(H2O)4]Cl4*8H2O

Cu2(C10H16N4Cl4)(H2O)4(4+)*4Cl(1-)*8H2O = [Cu2(C10H16N4Cl4)(H2O)4]Cl4*8H2O

Conditions
ConditionsYield
In water; butan-1-ol refluxing in butanol (10 h), extraction (water); pptn. from aq. phase (concn., cooling); elem. anal.;92%
1,1,2,2-tetrachloroethylene
127-18-4

1,1,2,2-tetrachloroethylene

(E)-tert-butyldimethyl[3-(tributylstannyl)prop-2-enyloxy]silane
90838-72-5, 110410-38-3, 134435-95-3, 86633-16-1, 81925-28-2, 86646-19-7

(E)-tert-butyldimethyl[3-(tributylstannyl)prop-2-enyloxy]silane

(6E,10E)-8,9-Bis((E)-3-((tert-butyldimethylsilyl)oxy)prop-1-en-1-yl)-2,2,3,3,14,14,15,15-octamethyl-4,13-dioxa-3,14-disilahexadeca-6,8,10-triene
1638292-74-6

(6E,10E)-8,9-Bis((E)-3-((tert-butyldimethylsilyl)oxy)prop-1-en-1-yl)-2,2,3,3,14,14,15,15-octamethyl-4,13-dioxa-3,14-disilahexadeca-6,8,10-triene

Conditions
ConditionsYield
With palladium diacetate; XPhos at 60℃; Stille Cross Coupling; Inert atmosphere;90%
With palladium diacetate; XPhos at 60℃; Stille Cross Coupling; Inert atmosphere;90%
1,1,2,2-tetrachloroethylene
127-18-4

1,1,2,2-tetrachloroethylene

tributyl[(E)-2-trimethylsilylethenyl]stannane
58207-97-9

tributyl[(E)-2-trimethylsilylethenyl]stannane

((1E,5E)-3,4-bis((E)-2-(trimethylsilyl)vinyl)hexa-1,3,5-triene-1,6-diyl)bis(trimethylsilane)
1638178-58-1

((1E,5E)-3,4-bis((E)-2-(trimethylsilyl)vinyl)hexa-1,3,5-triene-1,6-diyl)bis(trimethylsilane)

Conditions
ConditionsYield
With palladium diacetate; XPhos at 60℃; Stille Cross Coupling; Inert atmosphere;89%
With palladium diacetate; XPhos at 60℃; Stille Cross Coupling; Inert atmosphere;89%
1,1,2,2-tetrachloroethylene
127-18-4

1,1,2,2-tetrachloroethylene

sodium isopropanethiolate
20607-43-6

sodium isopropanethiolate

tetrakis-isopropylsulfanyl-ethene
39137-72-9

tetrakis-isopropylsulfanyl-ethene

Conditions
ConditionsYield
In N,N,N,N,N,N-hexamethylphosphoric triamide for 1h; Ambient temperature;85%
1,1,2,2-tetrachloroethylene
127-18-4

1,1,2,2-tetrachloroethylene

hypofluorous acid trifluoromethyl ester
373-91-1

hypofluorous acid trifluoromethyl ester

A

CFC-112a
76-12-0

CFC-112a

B

dichloro-fluoro-acetyl chloride
354-17-6

dichloro-fluoro-acetyl chloride

C

1,1,2,2-tetrachloro-1-fluoro-2-trifluoromethoxyethane
136649-69-9

1,1,2,2-tetrachloro-1-fluoro-2-trifluoromethoxyethane

D

Trichloroacetyl chloride
76-02-8

Trichloroacetyl chloride

E

Dichloro-trifluoromethoxy-acetyl chloride

Dichloro-trifluoromethoxy-acetyl chloride

F

COCl2

COCl2

Conditions
ConditionsYield
With oxygen at 40.9℃; under 420.8 Torr; for 1.97833h; Product distribution; Mechanism; Rate constant; var. of partial pressure, temp.;A n/a
B n/a
C n/a
D 85%
E n/a
F n/a
1,1,2,2-tetrachloroethylene
127-18-4

1,1,2,2-tetrachloroethylene

fac-tricarbonyl(bis(diphenylphosphino)ethane)(η1-methyldithiobenzoate)tungsten
118050-71-8, 118050-81-0

fac-tricarbonyl(bis(diphenylphosphino)ethane)(η1-methyldithiobenzoate)tungsten

mer-tricarbonyl(bis(diphenylphosphino)ethane)(η2-methyldithiobenzoate)tungsten * tetrachloroethene

mer-tricarbonyl(bis(diphenylphosphino)ethane)(η2-methyldithiobenzoate)tungsten * tetrachloroethene

Conditions
ConditionsYield
In tetrahydrofuran isomerization in THF within about 48 h;; concn.; pptn. with tetrachloroethene; elem. anal.;;85%
1,1,2,2-tetrachloroethylene
127-18-4

1,1,2,2-tetrachloroethylene

tetrabutyl-ammonium chloride
1112-67-0

tetrabutyl-ammonium chloride

C2Cl12Si4(2-)*2C16H36N(1+)

C2Cl12Si4(2-)*2C16H36N(1+)

Conditions
ConditionsYield
With hexachlorodisilane In dichloromethane at -10 - 20℃; for 12h; Inert atmosphere;85%
1,1,2,2-tetrachloroethylene
127-18-4

1,1,2,2-tetrachloroethylene

Octanethiol
111-88-6

Octanethiol

A

Octyl-<1.2.2-trichlor-vinyl>-sulfid
36061-42-4

Octyl-<1.2.2-trichlor-vinyl>-sulfid

B

1-((E)-1,2-Dichloro-2-octylsulfanyl-vinylsulfanyl)-octane
130920-00-2

1-((E)-1,2-Dichloro-2-octylsulfanyl-vinylsulfanyl)-octane

Conditions
ConditionsYield
With potassium hydroxide In ethanol; N,N-dimethyl-formamide at 60 - 70℃;A n/a
B 83%
1,1,2,2-tetrachloroethylene
127-18-4

1,1,2,2-tetrachloroethylene

diamantane-3-spiro-3'-diazirine
105522-49-4

diamantane-3-spiro-3'-diazirine

3-chlorodiamantane
30651-01-5

3-chlorodiamantane

Conditions
ConditionsYield
Irradiation;83%
1,1,2,2-tetrachloroethylene
127-18-4

1,1,2,2-tetrachloroethylene

A

1,1,1-trifluoro-2,2-dichloroethane
306-83-2

1,1,1-trifluoro-2,2-dichloroethane

B

1,1,2-trichloro-2,2-difluoroethane
354-21-2

1,1,2-trichloro-2,2-difluoroethane

C

1,1,1,2-tetrafluoro-2-chloroethane
2837-89-0

1,1,1,2-tetrafluoro-2-chloroethane

Conditions
ConditionsYield
With hydrogen fluoride; antimony(III) fluoride; antimony pentafluoride at 129 - 143℃; under 17626.8 - 19502 Torr; for 4.1h;A 80.5%
B 0.3%
C 5.1%
With hydrogen fluoride; antimony pentafluoride at 135 - 143℃; under 18751.9 Torr; for 2.7h;A 26%
B 0.6%
C 25.8%

127-18-4Relevant articles and documents

A novel method of CCl4 disposal by disproportionation with CH4 over Pt on various supports

Bae, Jong Wook,Lee, Jae Sung,Lee, Kyung Hee,Lee, Byeongno,Yang, Duck Joo

, p. 264 - 265 (2001)

In disproportionation of CCl4 with CH4 into CH3Cl and CHCl3, platinum supported on SrCO3, SiO2, MgO and MgAl2O4 showed stable activity and high selectivities around 700 K, providing a novel disposal method of ozone-depleting CCl4.

Mechanistic modeling of the wall reactions in the pyrolysis of pentachloroethane

Huybrechts,Daniels,Van Assche,Van Mele

, p. 322 - 330 (2002)

The thermal dehydrochlorination C2HCl5 → C2Cl4 + HCl has been studied in a static system between 565 and 645 K at pressures ranging from 5 to 21 torr. The course of the reaction was followed by measuring the pressure rise in the conditioned quartz reaction vessel and by analyzing the products by gas chromatography. The observed experimental results and data from the literature for flow systems can be explained quantitatively in terms of a radical reaction model involving heterogeneous chain initiation and termination steps. The rate constants have been deduced for reactions of Cl, Cl2, and C2HCl5 over reactor walls covered with a pyrolytic carbon film and for reactions of adsorbed Cl atoms.

Influence of amine buffers on carbon tetrachloride reductive dechlorination by the iron oxide magnetite

Danielsen, Karlin M.,Gland, John L.,Hayes, Kim F.

, p. 756 - 763 (2005)

The influence of amine buffers on carbon tetrachloride (CCI4) reductive dechlorination by the iron oxide magnetite (FeIIFe II2O4) was examined in batch reactors. A baseline was provided by monitoring the reaction in a magnetite suspension containing NaCl as a background electrolyte at pH 8.9. The baseline reaction rate constant was measured at 7.1 × 10-5 ± 6.3 × 10-6 L m-2 h-1. Carbon monoxide (CO) was the dominant reaction product at 82% followed by chloroform (CHCI3) at 5.2%. In the presence of 0.01 M tris-(deuteroxymethyl) aminomethane (TRIS d), the reaction rate constant nearly tripled to 2.1 × 10 -4 ± 6.5 × 10-6 L m-2 h -1 but only increased the CHCI3 yield to 11% and did not cause any statistically significant changes to the CO yield. Reactions in the presence of triethylammonium (TEAd) (0.01 M) increased the rate constant by 17% to 8.6 × 10-5 ± 8.1 × 10 -6 L m-2 h-1 but only increased the CHCI 3 yield to 8.8% while leaving the CO yield unchanged. The same concentration of N,N,N′,N′-tetraethylethylenediamine (TEEN) increased the reaction rate constant by 18% to 8.7 × 10-5 ± 4.8 × 10-6 L m-2 h-1 but enhanced the CHCI3 yield to 34% at the expense of the CO yield that dropped to 35%. Previous work has shown that CHCI3 can be generated either through hydrogen abstraction by a trichloromethyl radical ( .CCI3), or through proton abstraction by the trichlorocarbanion (-:CCI3). These two possible hydrogenolysis pathways were examined in the presence of deuterated buffers. Deuterium tracking experiments revealed that proton abstraction by the trichlorocarbanion was the dominant hydrogenolysis mechanism in the magnetite-buffered TRISd and TEAd systems. The only buffer that had minimal influence on both the reaction rate and product distribution was TEAd. These results indicate that buffers should be prescreened and demonstrated to have minimal impact on reaction rates and product distributions prior to use. Alternatively, it may be preferable, to utilize the buffer capacity of the solids to avoid organic buffer interactions entirely.

Novel photocatalytic mechanisms for CHCl3, CHBr3, and CCl3CO2 degradation and the fate of photogenerated trihalomethyl radicals on TiO2

Choi, Wonyong,Hoffmann, Michael R.

, p. 89 - 95 (1997)

The photocatalytic degradation of CHCl3, CHBr3, CCl4, and CCl3CO2- is investigated in aqueous TiO2 suspensions. A common intermediate, the trihalomethyl radical, is involved in the degradation of each substrate except for CCl3CO2-, CHCl3 and CHBr3 are degraded into carbon monoxide and halide ions in the absence of dissolved oxygen. The anoxic degradation proceeds through a dihalocarbene intermediate, which is produced by sequential reactions of the haloform molecule with a valence band hole and a conduction band electron. Carbon dioxide and halide ion are formed as the primary products during CHCl3 degradation in the presence of oxygen. Under these conditions, the trihalomethyl radicals react rapidly with dioxygen. At pH > 11, degradation of the haloforms is enhanced dramatically. This enhancement is ascribed to photoenhanced hydrolysis. The secondary reactions of the trichloromethyl radical generated during CCl4 photolysis is strongly influenced by the nature of the electron donors. Both ·CCl3 and Cl- production increase substantially when 2-propanol is present as an electron donor. A new photocatalytic mechanism for CCl3CO2- degradation, which involves the formation of a dichlorocarbene intermediate, is proposed.

Dynamic behaviour of chlorofluoroethanes at fluorinated chromia aerogels and fluorinated zinc(II) or magnesium(II) doped chromia aerogels

Bozorgzadeh, Hamid,Kemnitz, Erhard,Nickkho-Amiry, Mahmood,Skapin, Toma?,Winfield, John M.

, p. 83 - 92 (2003)

The preparation and characterisation of two series of fluorinated chromia aerogel materials, lightly doped with zinc(II) or magnesium(II), are described. They behave as heterogeneous catalysts for transformations of 1,1,2-trichlorotrifluoroethane under HF

Generation of radical species in surface reactions of chlorohydrocarbons and chlorocarbons with fluorinated gallium(III) oxide or indium(III) oxide

Thomson

, p. 1881 - 1885 (1998)

The reactions of C1 and C2 chlorohydrocarbons and chlorocarbons have been studied with the Lewis acid catalysts fluorinated gallium(III) oxide and fluorinated indium(III) oxide, respectively. Product analysis shows chlorine-for-fluorine exchange reactions together with the formation of 2-methylpropane and its chlorinated analogues 2-chloromethyl-1,3-dichloropropane and 2-chloromethyl-1,2,3-trichloropropane. Reactivities of the chlorohydrocarbon probe molecules show fluorinated gallium(III) oxide to be a stronger Lewis acid than fluorinated indium(III) oxide. The formation of the symmetrical butyl compounds is consistent with the generation of surface radical species and is also consistent with a 1,2-migration mechanism operating within radical moieties at the Lewis acid surface.

Chlorination and dehydrochlorination reactions relevant to the manufacture of trichloroethene and tetrachloroethene: Part 1. Reaction pathways

Sutherland, Iain W.,Hamilton, Neil G.,Dudman, Christopher C.,Jones, Peter,Lennon, David,Winfield, John M.

, p. 1 - 11 (2011)

Factors which affect the selectivity of the chlorination of 1,2-dichloroethane and the associated dehydrochlorination reactions have been examined using approximate thermodynamic calculations, equilibrium measurements, and a continuous flow micro-reactor. There is a balance between surface and gas-phase chemistry within the system. Heterogeneous catalysis is not necessary to effect dehydrochlorination of 1,1,2,2-tetrachloroethane to trichloroethene but an attapulgite-supported copper(II) chloride catalyst favours formation of pentachloroethane and its dehydrochlorination product, tetrachloroethene. The latter is the thermodynamic minimum of the system. Below 473 K and with long reaction times (2 h, batch reactor), radical chlorination to form pentachloroethane is dominant. Above 573 K and under flow conditions, free radical dehydrochlorination to form trichloroethene becomes dominant. Heterogeneous chlorination under flow conditions provides a route to pentachloroethane and thence tetrachloroethene. High conversions favour the formation of oligomeric products.

Hydrodechlorination of Tetrachloromethane over Supported Pt Catalysts

Kim, Sang Y.,Choi, Hyun C.,Yanga, O B.,Lee, Kyung H.,Lee, Jae S.,Kim, Young G.

, p. 2169 - 2170 (1995)

In the selective hydrodechlorination of tetrachloromethane to chloroform, long catalytic life as well as high selectivity to chloroform is achieved over a platinum catalyst supported on MgO.

The pyrolysis of CCl4 and C2Cl6 in the gas phase. Mechanistic modeling by thermodynamic and kinetic parameter estimation

Huybrechts,Narmon,Van Mele

, p. 27 - 36 (1996)

A detailed radical reaction mechanism is proposed to describe the thermal reactions of CCl4 and C2Cl6 in the gas phase quantitatively. A consistent set of activation energies and preexponential factors for all elementary reactions, in combination with enthalpies of formation and entropies for all species involved, is computer optimized to fit experimental pressure-rise curves and concentration profiles. For this purpose new experimental results on the pyrolysis of CCl4 are used, together with published kinetic data on the pyrolysis of C2Cl6 (in the absence and in the presence of Cl2).

A homoleptic tetravalent cerium silylamide

Crozier, Alan R.,Bienfait, Andre M.,Maichle-Moessmer, Caecilia,Toernroos, Karl W.,Anwander, Reiner

, p. 87 - 89 (2013)

Treatment of Ce[N(SiHMe2)2]3(thf) 2 with the chlorinating agents PhICl2, Ph3CCl or C2Cl6 gave the homoleptic Ce(iv) silylamide Ce[N(SiHMe2)2]4. When performed in the absence of donating (solvent) molecules, the trivalent cluster Ce 5[N(SiHMe2)2]8Cl7 was isolated.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 127-18-4