151-18-8Relevant articles and documents
Recycling method of beta,beta-iminodipropionitrile and application
-
Paragraph 0093-0095; 0100-0124; 0129-0130, (2021/05/26)
The invention provides a recycling method of beta,beta-iminodipropionitrile and application, and relates to the technical field of waste recycling. According to the recycling method, by adopting a specific reaction synthesis route, the beta,beta-iminodipropionitrile finally generates calcium pantothenate with wide application, and the recycling method not only reduces hazardous waste emission and treatment and lowers the hazardous waste treatment cost, but also realizes the purpose of turning waste into wealth from beta,beta-iminodipropionitrile, and the utilization value of beta,beta-iminodipropionitrile is greatly improved. The invention further provides application of the recycling method of the beta,beta-iminodipropionitrile, and in view of the advantages of the recycling method of the beta,beta-iminodipropionitrile, a new process route is provided for preparing calcium pantothenate.
Methods for synthesizing Beta-calcium aminopropionate and D-calcium pantothenate
-
Paragraph 0030; 0031; 0032; 0033; 0034; 0035, (2018/06/26)
The invention relates to the field of biochemical engineering, and discloses methods for synthesizing Beta-calcium aminopropionate and D-calcium pantothenate. According to the methods, acrylonitrile is utilized to react with liquid ammonia to prepare Beta-aminopropionitrile; nitrilase is utilized to catalyze to hydrolyze the Beta-aminopropionitrile to generate Beta-aminopropionic acid, afterwards,the Beta-aminopropionic acid reacts with a calcifying agent to synthesize the Beta-calcium aminopropionate, then the Beta-calcium aminopropionate generates an acylation reaction with D-pantolactone,and the D-calcium pantothenate is obtained by filtration and drying. The synthesis methods provided by the invention do not need to use a strong base to hydrolyze the Beta-aminopropionitrile, also donot need to use ion exchange resin to extract the Beta-aminopropionic acid, are used for effectively reducing the generation of a by-product salt, is easily amplified, is used for realizing continuousproduction, and has a quite good industrial application prospect, and a technique is simple, convenient, easy and feasible.
Method for preparing 3-aminopropionitrile under supercritical condition
-
Paragraph 0039; 0040; 0044; 0045, (2018/06/15)
The invention discloses a method for preparing 3-aminopropionitrile under a supercritical condition. According to the method, liquid ammonia and acrylonitrile are used as raw materials which are subjected to direct addition reaction in a pipeline reactor without adding a catalyst and a solvent to obtain 3-aminopropionitrile. The reaction according to the invention is carried out under a supercritical condition of the liquid ammonia, thus avoiding the use of a catalysts and a solvent when the liquid ammonia is used in reports in the past; a product can be obtained through continuous rectification; unreacted raw materials can be directly used; the process is safe and environmentally friendly, substances of non-reactive raw materials are not introduced, and the method accords with a concept of green chemistry. The conversion rate of acrylonitrile can reach 99.5-100.0%, and the selectivity can reach 85.5-95.8%, so that the acrylonitrile has a high industrial application value.
Amido Complexes of Iridium with a PNP Pincer Ligand: Reactivity toward Alkynes and Hydroamination Catalysis
Hermosilla, Pablo,López, Pablo,García-Ordunìa, Pilar,Lahoz, Fernando J.,Polo, Víctor,Casado, Miguel A.
, p. 2618 - 2629 (2018/08/21)
The pincer ligand HN(CH2CH2PPh2)2 (1; PNHP) reacted with [{Ir(μ-X)(cod)}2] (X = Cl, OMe), affording complexes [fac-(PNHP)Ir(cod)]Cl (2) and [fac-(PNP)Ir(cod)] (3), respectively. The X-ray molecular structure of 2 showed that the PNP ligand coordinates in a facial fashion, with the N atom in an axial site and both P atoms coordinated in the equatorial plane. Compound 1 is able to protonate the hydroxo bridges in the complex [{Ir(μ-OH)(coe)2}2] forming the new amido complex [mer-(PNP)Ir(coe)] (4). Complex 4 is an extremely air sensitive compound, as confirmed by the isolation of the oxo complex [mer-(PNP)Ir(σ2-O2)] (8) from its interaction with air. Protonation of 4 with HBF4 afforded the corresponding amino complex [mer-(PNHP)Ir(coe)]BF4 (5), whose molecular structure enlightened by X-ray crystallography confirmed the PNP ligand to be coordinated in a meridional fashion. The coe ligand in 4 is tightly bonded to iridium; however, under an atmosphere of ethylene at 60 °C or with acrylonitrile at 70 °C complex 4 exchanges the olefin, affording compounds [mer-(PNP)Ir(σ2-C2H4)] (6) and [mer-(PNP)Ir(σ2-C2H3CN)] (7), respectively. Interaction of 4 with alkynes depends on the nature of the substrate; therefore, methyl phenylpropiolate reacted with 4, affording the adduct [mer-(PNP)Ir(σ2-PhCCC(O)OMe)] (9), while the parent acetylene undergoes a double C-H activation, affording the Ir(III) complex [fac-(PNHP)IrH(Ca‰?CH)2] (10). A DFT theoretical analysis of this transformation supports a metal-ligand cooperation mechanism. The reaction starts by deprotonation of an alkyne moiety by the PNP ligand followed by oxidative addition of the C-H bond to the metal of a second alkyne molecule. Additionally, we have tested complex 4 as a catalyst for the addition of gaseous ammonia to activated unsaturated substrates. A DFT theoretical analysis disclosed the operative mechanism on these organic transformations, which starts with a nucleophilic attack of ammonia to the bound alkyne, hydrogen migration to the metal, and reductive elimination steps.
Parent-amido (NH2) palladium(II) complexes: Synthesis, reactions, and catalytic hydroamination
Kim, Youngwon,Park, Soonheum
, p. 614 - 629 (2016/06/01)
The treatment of [PdL3(NH3)](OTf)n (n = 1; L3 = (PEt3)2(Ph), (2,6-(Cy2PCH2)2C6H3), n = 2; L3 = (dppe)(NH3)) with NaNH2 in tetrahydrofuran at ambient temperature or -78 °C afforded the dimeric and monomeric parent-amido palladium(II) complexes anti-[Pd(PEt3)(Ph)(μ-NH2)]2 (1), [Pd(dppe)(μ-NH2)]2(OTf)2 (2), and Pd(2,6-(Cy2PCH2)2C6H3)(NH2) (3), respectively. The molecular structures of the amido-bridged (μ-NH2) dimeric complexes 1 and 2 were determined by single-crystal X-ray crystallography. The monomeric amido complex 3 reacted with trace amounts of water to give a hydroxo complex, Pd(2,6-(Cy2PCH2)2C6H3)(OH) (4). Exposing complex 3 to an excess of water resulted in the complete conversion of the complex into two species [Pd(2,6-(Cy2PCH2)2C6H3)(OH2)]+ and [Pd(2,6-(Cy2PCH2)2C6H3)(NH3)]+. Complex 3 reacted with diphenyliodonium triflate ([Ph2I]OTf) to give the aniline complex [Pd(2,6-(Cy2PCH2)2C6H3)(NH2Ph)]OTf. The reaction of 3 with phenylacetylene (HCCPh) yielded a palladium(II) acetylenide Pd(2,6-(Cy2PCH2)2C6H3)(CCPh) (5), quantitatively, along with the liberation of ammonia. The reaction of 3 with dialkyl acetylenedicarboxylate yielded diastereospecific palladium(II) vinyl derivatives (Z)-Pd(2,6-(Cy2PCH2)2C6H3)(CRCR(NH2)) (R = CO2Me (6a), CO2Et (6b)). The reaction of complexes 6a and 6b with p-nitrophenol produced Pd(2,6-(Cy2PCH2)2C6H3)(OC6H4-p-NO2) (7) and cis-CHRCR(NH2), exclusively. Reactions of 3 with either dialkyl maleate (cis-(CO2R)CHCH(CO2R)) (R = CH3, CH2CH3) or cis-stilbene (cis-CHPhCHPh) did not result in any addition product. Instead, isomerization of the cis-isomers to the trans-isomers occurred in the presence of catalytic amounts of 3. Complex 3 reacted with a stoichiometric amount of acrylonitrile (CH2CHCN) to generate a metastable insertion product, Pd(2,6-(Cy2PCH2)2C6H3)(CH(CN)CH2NH2). On the other hand, the reaction of 3 with an excess of acrylonitrile slowly produced polymeric species of acrylonitrile. The catalytic hydroamination of olefins with NH3 was examined in the presence of Pd(2,6-(Cy2PCH2)2C6H3)(OTf), producing a range of hydroaminated products of primary, secondary, and tertiary amines with different molar ratios of more than 99% overall yield. A mechanistic feature for the observed catalytic hydroamination is described with regard to the aminated derivatives of palladium(II).
Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism
Patel, Bhavesh H.,Percivalle, Claudia,Ritson, Dougal J.,Duffy, Colm D.,Sutherland, John D.
, p. 301 - 307 (2015/04/14)
A minimal cell can be thought of as comprising informational, compartment-forming and metabolic subsystems. To imagine the abiotic assembly of such an overall system, however, places great demands on hypothetical prebiotic chemistry. The perceived differences and incompatibilities between these subsystems have led to the widely held assumption that one or other subsystem must have preceded the others. Here we experimentally investigate the validity of this assumption by examining the assembly of various biomolecular building blocks from prebiotically plausible intermediates and one-carbon feedstock molecules. We show that precursors of ribonucleotides, amino acids and lipids can all be derived by the reductive homologation of hydrogen cyanide and some of its derivatives, and thus that all the cellular subsystems could have arisen simultaneously through common chemistry. The key reaction steps are driven by ultraviolet light, use hydrogen sulfide as the reductant and can be accelerated by Cu(I)-Cu(II) photoredox cycling.
SPIROHYDANTOIN COMPOUNDS AND THEIR USE AS SELECTIVE ANDROGEN RECEPTOR MODULATORS
-
Page/Page column 84, (2013/09/12)
The present invention relates to a compound of formula (1-1 ) in free form or in pharmaceutically acceptable salt form in which the substituents are as defined in the specification; to its preparation, to its use as a medicament and to medicaments comprising it. The present invention further provides a combination of pharmacologically active agents and a pharmaceutical composition.
Novel synthesis of 3-aminopropionitriles by ring opening of 2-oxazolidinones with cyanide ion
Taniguchi, Tsuyoshi,Goto, Naoya,Ishibashi, Hiroyuki
supporting information; experimental part, p. 4857 - 4858 (2009/10/26)
Nucleophilic attack of cyanide ion on the 5-position of 2-oxazolidinones in the presence of 18-crown-6 gave 3-aminopropionitriles.
Efficient preparation of [1-15N]-3-cyano-4-methyl-1H-pyrrole by a Wittig-based strategy
Dawadi, Prativa B. S.,Lugtenburg, Johan
experimental part, p. 2288 - 2292 (2009/04/05)
3-Cyano-4-methyl-1H-pyrrole (1) was prepared by a new Wittig procedure from simple, commercially available starting materials in four steps with an overall yield of 39%. Similarly, [1-15N]-3-cyano-4-methyl-1H-pyrrole (1a) was prepared starting from [15N]-phthalimide. In this synthesis, Wittig coupling was used to form the central C-C bond of intermediate 6, which has nitrile and methyl substituents. Upon deprotection and cyclization pyrrole 1 is obtained directly in one pot. This scheme also allows stable isotope incorporation at any position or a combination of positions. 3-Cyano-4-methyl-1H-pyrrole was converted into the novel 1-benzyl-3-cyano-4- methylpyrrole and the novel 4-methyl-1H-pyrrole-3-aldehyde. It is clear that this novel Wittig procedure has a wide scope that will allow the easy preparation of many new pyrrole systems. Wiley-VCH Verlag GmbH & Co. KGaA, 2008.
Chemoselective hydrogenation of α,β-unsaturated nitriles
Kukula, Pavel,Studer, Martin,Blaser, Hans-Ulrich
, p. 1487 - 1493 (2007/10/03)
The chemoselective hydrogenation of cinnamonitrile to 3-phenylallylamine proceeds with up to 80% selectivity at conversions of > 90% with Raney cobalt and up to 60% selectivity with Raney nickel catalysts. Best results were obtained with a doped Raney cobalt catalyst (RaCo/Cr/Ni/Fe 2724) in ammonia saturated methanol at 100°C and 80 bar. Major problems are the formation of hydrocinnamonitrile and of secondary amines, and overreduction to 3-phenylpropylamine. Important parameters are the catalyst type and composition, the solvent type and the presence and concentration of ammonia. The catalytic system tolerates functional groups like OH, OMe, Cl, C=O, but not aromatic nitro groups. Preliminary experiments indicate that other unsaturated nitriles with di- or trisubstituted C=C bonds are also suitable substrates.