- Green, selective and swift oxidation of cyclic alcohols to corresponding ketones
-
Cyclohexanol oxidation to cyclohexanone is an important reaction in both organic chemistry and industry. We propose here an efficient, eco-friendly, and general method for oxidizing five- to eight-membered cyclanols used as model substrates, with aqueous hydrogen peroxide (H2O2) in the presence of tungstic acid (H2WO4) as a catalyst and an ammonium-based ionic liquid (IL) as a co-catalyst under organic solvent-free conditions. Cyclohexanol was found to be the most reactive of the four tested cyclanols. In addition, the role of the IL as a phase transfer catalyst was confirmed by the use of Aliquat 336 and the kinetic of the reaction was significantly improved under microwave or ultrasonic activation, leading to excellent yields in only a few minutes.
- Chatel, Gregory,Monnier, Camille,Kardos, Nathalie,Voiron, Celine,Andrioletti, Bruno,Draye, Micheline
-
-
Read Online
- A new property of geminal bishydroperoxides: Hydrolysis with the removal of hydroperoxide groups to form a ketone
-
A new property of geminal bishydroperoxide was discovered: the ability to hydrolyze in acid medium in the presence of hydrogen peroxide with the formation of ketones. The most resistant to hydrolysis are the cyclic C 6-bishydroperoxydes: at room temperature within one day they are practically not hydrolyzed; less stable is bishydroperoxycycloheptane (C 7): in a day its one fifth part is hydrolyzed. Bishydroperoxydes with the cycles of C8 and C12 for the same time hydrolyzed to 80 and 90% respectively. Of the two linear bishydroperoxydes, 2,2-dihydroperoxydecane, with sterically unhindered center, is more resistant to hydrolysis than 6,6-dihydroperoxyundecane. Pleiades Publishing, Ltd., 2010.
- Terent'ev,Krivykh,Krylov,Ogibin, Yu. N.,Nikishin
-
-
Read Online
- Facile ring opening of siloxy cyclopropanes by photoinduced electron transfer. A new way to β-keto radicals
-
Siloxy cyclopropanes undergo ring opening and fragmentation of formal silyl cations under formation of β-keto radicals. These reactive intermediates can be used in inter- and intramolecular addition reactions leading to complex ring systems if more than one unsaturated side chain is present in the starting material. Beside some synthetic examples mainly the mechanism will be discussed focusing on the structure of the primarily formed radical cations, the regioselectivity of cyclopropane cleavage (endo vs exo ring opening), leaving of the silyl group, and termination by H-transfer.
- Rinderhagen, Heiko,Waske, Prashant A.,Mattay, Jochen
-
-
Read Online
- Ruthenium carbonyl complex of a redox non-innocent ONS donor azophenol ligand: Electrochemistry, photophysical property, electronic structure and catalytic activity towards oxidation of alcohols
-
A ruthenium carbonyl complex, [Ru(CO)2(L)(Cl)2] (1) with a redox non-innocent thioether-containing azo-phenol ligand has been synthesized and characterized by various spectroscopic techniques, along with X-ray structure determination. Cyclic voltammogram of 1 exhibits Ru(II)/Ru(III) quasireversible oxidation (E1/2= 1.22 V) along with ligand based two successive reductions. Theoretical calculations using DFT/B3LYP method have been used to interpret the electronic structure of the complex. Synthesized ruthenium(II) complex efficiently catalyzed the oxidation of alcohols in presence of N-methylmorpholine-N-oxide.
- Roy, Puspendu,Mondal, Apurba Sau,Pramanik, Ajoy Kumar,Mondal, Tapan Kumar
-
-
Read Online
- An Engineered Cholesterol Oxidase Catalyses Enantioselective Oxidation of Non-steroidal Secondary Alcohols
-
The enantioselective oxidation of 2° alcohols to ketones is an important reaction in synthetic chemistry, especially if it can be achieved using O2-driven alcohol oxidases under mild reaction conditions. However to date, oxidation of secondary alcohols using alcohol oxidases has focused on activated benzylic or allylic substrates, with unactivated secondary alcohols showing poor activity. Here we show that cholesterol oxidase (EC 1.1.3.6) could be engineered for activity towards a range of aliphatic, cyclic, acyclic, allylic and benzylic secondary alcohols. Additionally, since the variants demonstrated high (S)-selectivity, deracemisation reactions were performed in the presence of ammonia borane to obtain enantiopure (R)-alcohols.
- Heath, Rachel S.,Sangster, Jack J.,Turner, Nicholas J.
-
-
- Synthesis of Visible-Light–Activated Hypervalent Iodine and Photo-oxidation under Visible Light Irradiation via a Direct S0→Tn Transition
-
Heavy atom-containing molecules cause a photoreaction by a direct S0→Tn transition. Therefore, even in a hypervalent iodine compound with a benzene ring as the main skeleton, the photoreaction proceeds under 365–400nm wavelength light, where UV-visible spectra are not observed by usual measurement method. Some studies, however, report hypervalent iodine compounds that strongly absorb visible light. Herein, we report the synthesis of two visible light-absorbing hypervalent iodines and their photooxidation properties under visible light irradiation. We also demonstrated that the S0→Tn transition causes the photoreaction to proceed under wavelengths in the blue and green light region.
- Matsuda, Yu,Matsumoto, Koki,Nagasawa, Sho,Nakajima, Masaya,Nemoto, Tetsuhiro
-
p. 235 - 239
(2022/03/16)
-
- Cu6- And Cu8-Cage Sil- And Germsesquioxanes: Synthetic and Structural Features, Oxidative Rearrangements, and Catalytic Activity
-
This study reports intriguing features in the self-assembly of cage copper(II) silsesquioxanes in the presence of air. Despite the wide variation of solvates used, a series of prismatic hexanuclear Cu6 cages (1-5) were assembled under mild conditions. In turn, syntheses at higher temperatures are accompanied by side reactions, leading to the oxidation of solvates (methanol, 1-butanol, and tetrahydrofuran). The oxidized solvent derivatives then specifically participate in the formation of copper silsesquioxane cages, allowing the isolation of several unusual Cu8-based (6 and 7) and Cu6-based (8) complexes. When 1,4-dioxane was applied as a reaction medium, deep rearrangements occurred (with a total elimination of silsesquioxane ligands), causing the formation of mononuclear copper(II) compounds bearing oxidized dioxane fragments (9 and 11) or a formate-driven 1D coordination polymer (10). Finally, a "directed"self-assembly of sil- and germsesquioxanes from copper acetate (or formate) resulted in the corresponding acetate (or formate) containing Cu6 cages (12 and 13) that were isolated in high yields. The structures of all of the products 1-13 were established by single-crystal X-ray diffraction, mainly based on the use of synchrotron radiation. Moreover, the catalytic activity of compounds 12 and 13 was evaluated toward the mild homogeneous oxidation of C5-C8 cycloalkanes with hydrogen peroxide to form a mixture of the corresponding cyclic alcohols and ketones.
- Astakhov, Grigorii S.,Levitsky, Mikhail M.,Zubavichus, Yan V.,Khrustalev, Victor N.,Titov, Aleksei A.,Dorovatovskii, Pavel V.,Smol'Yakov, Alexander F.,Shubina, Elena S.,Kirillova, Marina V.,Kirillov, Alexander M.,Bilyachenko, Alexey N.
-
p. 8062 - 8074
(2021/05/26)
-
- A Zr-Based Metal-Organic Framework with a DUT-52 Structure Containing a Trifluoroacetamido-Functionalized Linker for Aqueous Phase Fluorescence Sensing of the Cyanide Ion and Aerobic Oxidation of Cyclohexane
-
A zirconium (Zr) metal-organic framework having a DUT-52 (DUT stands for Dresden University of Technology) structure with face-centered cubic topology and bearing the rigid 1-(2,2,2-trifluoroacetamido) naphthalene-3,7-dicarboxylic acid (H2NDC-NHCOCF3) ligand was prepared, and its solid structure was characterized with the help of the X-ray powder diffraction (XRPD) technique. Other characterization methods like thermogravimetric analysis (TGA) and Fourier transform infrared (FT-IR) spectroscopy were applied to verify the phase purity of the compound. In order to get the solvent-free compound (1′), 1 was stirred with methanol for overnight and subsequently heated at 100 °C overnight under vacuum. As-synthesized (1) and activated (1′) compounds are thermally stable up to 300 °C. The Brunsuer Emmett-Teller (BET) surface area of 1′ was found to be 1105 m2 g-1. Fluorescence titration experiments showed that 1′ exhibits highly selective and sensitive fluorescence turn-on behavior toward cyanide (CN-) anion. The interference experiments suggested that other anions did not interfere in the detection of CN-. Moreover, a very short response time (2 min) was shown by probe 1′ for CN- detection. The detection limit was found to be 0.23 μM. 1′ can also be effectively used for CN- detection in real water samples. The mechanism for the selective detection of CN- was investigated systematically. Furthermore, the aerobic oxidation of cyclohexane was performed with 1′ under mild reaction conditions, observing higher activity than the analogous DUT-52 solid under identical conditions. These experiments clearly indicate the benefits of hydrophobic cavities of 1′ in achieving higher conversion of cyclohexane and cyclohexanol/cyclohexanone selectivity. Catalyst stability was proved by two consecutive reuses and comparing the structural integrity of 1′ before and after reuses by the XRPD study.
- Gogoi, Chiranjib,Nagarjun, Nagarathinam,Roy, Shubasis,Mostakim,Volkmer, Dirk,Dhakshinamoorthy, Amarajothi,Biswas, Shyam
-
supporting information
p. 4539 - 4550
(2021/04/06)
-
- Time-Dependent Self-Assembly of Copper(II) Coordination Polymers and Tetranuclear Rings: Catalysts for Oxidative Functionalization of Saturated Hydrocarbons
-
This study describes a time-dependent self-assembly generation of new copper(II) coordination compounds from an aqueous-medium reaction mixture composed of copper(II) nitrate, H3bes biobuffer (N,N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid), ammonium hydroxide, and benzenecarboxylic acid, namely, 4-methoxybenzoic (Hfmba) or 4-chlorobenzoic (Hfcba) acid. Two products were isolated from each reaction, namely, 1D coordination polymers [Cu3(μ3-OH)2(μ-fmba)2(fmba)2(H2O)2]n (1) or [Cu2(μ-OH)2(μ-fcba)2]n (2) and discrete tetracopper(II) rings [Cu4(μ-Hbes)3(μ-H2bes)(μ-fmba)]·2H2O (3) or [Cu4(μ-Hbes)3(μ-H2bes)(μ-fcba)]·4H2O (4), respectively. These four compounds were obtained as microcrystalline air-stable solids and characterized by standard methods, including the single-crystal X-ray diffraction. The structures of 1 and 2 feature distinct types of metal-organic chains driven by the μ3- or μ-OH- ligands along with the μ-benzenecarboxylate linkers. The structures of 3 and 4 disclose the chairlike Cu4 rings assembled from four μ-bridging and chelating aminoalcoholate ligands along with μ-benzenecarboxylate moieties playing a core-stabilizing role. Catalytic activity of 1-4 was investigated in two model reactions, namely, (a) the mild oxidation of saturated hydrocarbons with hydrogen peroxide to form alcohols and ketones and (b) the mild carboxylation of alkanes with carbon monoxide, water, and peroxodisulfate to generate carboxylic acids. Cyclohexane and propane were used as model cyclic and gaseous alkanes, while the substrate scope also included cyclopentane, cycloheptane, and cyclooctane. Different reaction parameters were investigated, including an effect of the acid cocatalyst and various selectivity parameters. The obtained total product yields (up to 34% based on C3H8 or up to 47% based on C6H12) in the carboxylation of propane and cyclohexane are remarkable taking into account an inertness of these saturated hydrocarbons and low reaction temperatures (50-60 °C). Apart from notable catalytic activity, this study showcases a novel time-dependent synthetic strategy for the self-assembly of two different Cu(II) compounds from the same reaction mixture.
- Costa, Ines F. M.,Kirillova, Marina V.,André, Vania,Fernandes, Tiago A.,Kirillov, Alexander M.
-
supporting information
p. 14491 - 14503
(2021/07/19)
-
- Three metal centers (Co _AOMARKENCODEAMPX0AOA) Cu _AOMARKENCODEAMPX0AOA Method using Zn) 2D MOFs/ultraviolet light to catalyze oxidation of cycloalkane
-
The invention relates to a three-metal center (Co _AOMARKENCODEAMPX0AOA). Cu _AOMARKENCODEAMPX0AOA The method comprises Zn) 2D MOFs/ultraviolet light catalytic oxidation of cycloalkane to synthesize cycloalkyl alcohol and cycloalkanone, and belongs to the field of industrial catalysis and fine organic synthesis. To the application method, metalloporphyrin three-metal center (Co _AOMARKENCODEAMPX0AOA) is used. Cu _AOMARKENCODEAMPX0AOA Zn) 2D MOFs dispersed in cycloalkane, wherein metalloporphyrin three-metal center (Co _AOMARKENCODEAMPX0AOA) Cu _AOMARKENCODEAMPX0AOA Zn) 2D MOFs mass is 0.01% - 20%, g / mol of the substance of the cycloalkane, and the reaction system is sealed. An oxidant is introduced, the ultraviolet lamp is a light source, and the reaction liquid of the stirring reaction 2.0-24 . 0h. is subjected to post-treatment to obtain the product cycloalkyl alcohol and cycloalkyl ketone. The method provided by the invention has the advantages of low reaction temperature, mild reaction conditions, high reaction efficiency, high selectivity of cycloalkyl alcohol and cycloalkyl ketone, less byproducts and small environmental impact. The invention provides a high efficiency. Available, safe cycloalkanes selectively catalyze the oxidative synthesis of cycloalkyl alcohols and cycloalkyl ketones.
- -
-
Paragraph 0028; 0077-0078
(2021/11/06)
-
- Revisiting Alkane Hydroxylation with m-CPBA (m-Chloroperbenzoic Acid) Catalyzed by Nickel(II) Complexes
-
Mechanistic studies are performed on the alkane hydroxylation with m-CPBA (m-chloroperbenzoic acid) catalyzed by nickel(II) complexes, NiII(L). In the oxidation of cycloalkanes, NiII(TPA) acts as an efficient catalyst with a high yield and a high alcohol selectivity. In the oxidation of adamantane, the tertiary carbon is predominantly oxidized. The reaction rate shows first-order dependence on [substrate] and [NiII(L)] but is independent on [m-CPBA]; vobs=k2[substrate][NiII(L)]. The reaction exhibited a relatively large kinetic deuterium isotope effect (KIE) of 6.7, demonstrating that the hydrogen atom abstraction is involved in the rate-limiting step of the catalytic cycle. Furthermore, NiII(L) supported by related tetradentate ligands exhibit apparently different catalytic activity, suggesting contribution of the NiII(L) in the catalytic cycle. Based on the kinetic analysis and the significant effects of O2 and CCl4 on the product distribution pattern, possible contributions of (L)NiII?O. and the aroyloxyl radical as the reactive oxidants are discussed.
- Itoh, Mayu,Itoh, Shinobu,Kubo, Minoru,Morimoto, Yuma,Shinke, Tomoya,Sugimoto, Hideki,Wada, Takuma,Yanagisawa, Sachiko
-
p. 14730 - 14737
(2021/09/29)
-
- SBA-15 Supported 1-Methyl-2-azaadamanane N-Oxyl (1-Me-AZADO) as Recyclable Catalyst for Oxidation of Alcohol
-
Herein, we designed and synthesized an SBA-15 supported 1-methyl-2-azaadamanane N-oxyl (1-Me-AZADO) and investigated its catalytic performance for selective oxidation of alcohols under Anelli's conditions. The first example of immobilization of 1-Me-AZADO was very important to advance the oxgenation effectively because this supported N-oxyl has excellent catalytic activity for oxidation of alcohols to carbonyl compounds, and more importantly, it can be conveniently recovered and reused at least 6 times without significant effect on its catalytic efficiency.
- Tian, Yangwu,Guo, Xiaqun,Li, Meichao,Li, Chunmei,Hu, Xinquan,Jin, Liqun,Sun, Nan,Hu, Baoxiang,Shen, Zhenlu
-
supporting information
p. 3928 - 3932
(2021/05/26)
-
- A Convenient Protocol for the Oxidation of Benzyl and Secondary Alcohols to Carbonyl Compounds by Trichoroisocyanuric Acid
-
A very convenient methodology to oxidize benzyl alcohols to benzaldehydes (9 examples, up to 95%) and secondary alcohols to ketones (8 examples, up to 99%) using trichloroisocyanuric acid in CH2Cl2/MeCN (1:1) as co-solvent in the presence of water at room temperature is presented in this study.
- De Mattos, Marcio C. S.,Dos Santos, Carlos Vinicius P.
-
p. 854 - 861
(2022/03/01)
-
- Zwitterion-induced organic-metal hybrid catalysis in aerobic oxidation
-
In many metal catalyses, the traditional strategy of removing chloride ions is to add silver salts via anion exchange to obtain highly active catalysts. Herein, we reported an alternative strategy of removing chloride anions from ruthenium trichloride using an organic [P+-N-] zwitterionic compound via multiple hydrogen bond interactions. The resultant organic-metal hybrid catalytic system has successfully been applied to the aerobic oxidation of alcohols, tetrahydroquinolines, and indolines under mild conditions. The performance of zwitterion is far superior to that of many other common Lewis bases or Br?nsted bases. Mechanistic studies revealed that the zwitterion triggers the dissociation of chloride from ruthenium trichloride via nonclassical hydrogen bond interaction. Preliminary studies show that the zwitterion is applicable to catalytic transfer semi-hydrogenation.
- Hu, Rong-Bin,Lam, Ying-Pong,Ng, Wing-Hin,Wong, Chun-Yuen,Yeung, Ying-Yeung
-
p. 3498 - 3506
(2021/04/07)
-
- Chemoselective Hydrogenation of Olefins Using a Nanostructured Nickel Catalyst
-
The selective hydrogenation of functionalized olefins is of great importance in the chemical and pharmaceutical industry. Here, we report on a nanostructured nickel catalyst that enables the selective hydrogenation of purely aliphatic and functionalized olefins under mild conditions. The earth-abundant metal catalyst allows the selective hydrogenation of sterically protected olefins and further tolerates functional groups such as carbonyls, esters, ethers and nitriles. The characterization of our catalyst revealed the formation of surface oxidized metallic nickel nanoparticles stabilized by a N-doped carbon layer on the active carbon support.
- Klarner, Mara,Bieger, Sandra,Drechsler, Markus,Kempe, Rhett
-
supporting information
p. 2157 - 2161
(2021/05/21)
-
- Efficient oxidation of cycloalkanes with simultaneously increased conversion and selectivity using O2 catalyzed by metalloporphyrins and boosted by Zn(AcO)2: A practical strategy to inhibit the formation of aliphatic diacids
-
The direct sources of aliphatic acids in cycloalkanes oxidation were investigated, and a strategy to suppress the formation of aliphatic acids was adopted through enhancing the catalytic transformation of oxidation intermediates cycloalkyl hydroperoxides to cycloalkanols by Zn(II) and delaying the emergence of cycloalkanones. Benefitted from the delayed formation of cycloalkanones and suppressed non-selective thermal decomposition of cycloalkyl hydroperoxides, the conversion of cycloalkanes and selectivity towards cycloalkanols and cycloalkanones were increased simultaneously with satisfying tolerance to both of metalloporphyrins and substrates. For cyclohexane, the selectivity towards KA-oil was increased from 80.1% to 96.9% meanwhile the conversion was increased from 3.83 % to 6.53 %, a very competitive conversion level with higher selectivity compared with current industrial process. This protocol is not only a valuable strategy to overcome the problems of low conversion and low selectivity lying in front of current cyclohexane oxidation in industry, but also an important reference to other alkanes oxidation.
- Shen, Hai-Min,Wang, Xiong,Ning, Lei,Guo, A-Bing,Deng, Jin-Hui,She, Yuan-Bin
-
-
- Mild oxidative functionalization of cycloalkanes catalyzed by novel dicopper(II) cores
-
The search for new transition metal based catalytic systems that are active in the oxidative functionalization of such inert substrates as saturated hydrocarbons continues to be an important research direction in molecular catalysis. In the present study, two new copper(II) coordination compounds, namely a discrete dimer [Cu2(μ-H2tea)2(nfa)2]·2H2O (1) and a 1D coordination polymer [Cu2(μ-H2tea)2(μ-Htma)]n·4nH2O (2) were synthesized and applied as homogeneous catalysts for the mild oxidative functionalization of cycloalkanes (cyclopentane, cyclohexane, cycloheptane, and cyclooctane). Both products 1 and 2 were self-assembled in aqueous medium from copper(II) nitrate, triethanolamine (H3tea), sodium hydroxide, and 2-naphthoic (Hnfa) or trimesic (H3tma) acids, isolated as stable crystalline solids, and fully characterized by standard methods including single-crystal X-ray diffraction. Their structures feature a similar type of dicopper(II) triethanolaminate cores that are decorated by terminal or bridging aromatic carboxylate ligands. Two model catalytic reactions were investigated, namely the oxidation of cycloalkanes by H2O2 to produce cycloalkyl hydroperoxides as intermediate products and then a mixture of cyclic alcohols and ketones as final products, and the carboxylation of cycloalkanes with CO/S2O82?/H2O to form cycloalkanecarboxylic acids as main products. These model reactions undergo under very mild conditions (50?60 °C) and show good efficiency. Substrate scope, selectivity features, and the effects of reaction parameters were investigated and discussed in detail. This study widens the family of multicopper(II) cores capable of catalyzing the oxidative functionalization of saturated hydrocarbons under mild conditions.
- Trusau, Kiryl I.,Kirillova, Marina V.,André, Vania,Usevich, Andrew I.,Kirillov, Alexander M.
-
-
- Efficient Aliphatic C-H Oxidation and C═C Epoxidation Catalyzed by Porous Organic Polymer-Supported Single-Site Manganese Catalysts
-
Bioinspired manganese complexes have emerged over recent decades as attractive catalysts for a number of selective oxidation reactions. However, these catalysts still suffer from oxidative degradation. In the present study, we prepared a series of porous Mn-N4 catalysts in which the catalytic units are embedded in the skeleton of porous organic polymers (POPs). These POP-based manganese catalysts demonstrated high reactivity in the oxidation of aliphatic C-H bonds and the asymmetric epoxidation of olefins. Furthermore, these catalysts could be readily recycled and reused due to their heterogeneous nature. Morphological characterization revealed that the Mn-N4 complex was individually distributed over a porous polymer network. Remarkably, the nature of the single-site catalyst prevented oxidative degradation during the reaction. The present work has thus developed a successful approach for bioinspired single-site manganese catalysts in which the oxidation reaction is confined to a specific channel in an enzyme-like mode.
- Wang, Bingyang,Lin, Jin,Sun, Qiangsheng,Xia, Chungu,Sun, Wei
-
p. 10964 - 10973
(2021/09/08)
-
- SBA-15 Supported Silver Catalyst for the Efficient Aerobic Oxidation of Toluene Under Solvent-Free Conditions
-
The efficient SBA-15 supported silver catalysts(Ag/SBA-15) were prepared and characterized by ICP-OES, XRD, TEM, SEM, XPS and N2 adsorption–desorption techniques. The catalysts exhibited an excellent catalytic activity for the aerobic oxidation of toluene to benzaldehyde under solvent-free conditions. Conversion of toluene and selectivity of benzaldehyde were 50% and 89% respectively over catalyst with 9.1 wt% Ag loading (10Ag/SBA-15). A wide range of substrates were tolerated under the selected reaction conditions. The kinetic study shows that the oxidation of toluene over 10Ag/SBA-15 is pseudo-first-order reaction and the activation energy Ea is 45.1?kJ/mol. A plausible mechanism involving oxygen free radicals was proposed for the aerobic oxidation reaction. Compared with the traditional method, the newly designed heterogeneous catalytic system shows better economic applicability, environmental friendliness and broader application prospects. Graphical abstract: [Figure not available: see fulltext.]
- Chen, Lei,Chen, Yanjiao,Dai, Xuan,Guo, Jiaming,Peng, Xinhua
-
-
- Visible-light photocatalytic selective oxidation of C(sp3)-H bonds by anion-cation dual-metal-site nanoscale localized carbon nitride
-
Selective oxidation of C(sp3)-H bonds to carbonyl groups by abstracting H with a photoinduced highly active oxygen radical is an effective method used to give high value products. Here, we report a heterogeneous photocatalytic alkanes C-H bonds oxidation method under the irradiation of visible light (λ= 425 nm) at ambient temperature using an anion-cation dual-metal-site modulated carbon nitride. The optimized cation (C) of Fe3+or Ni2+, with an anion (A) of phosphotungstate (PW123?) constitutes the nanoscale dual-metal-site (DMS). With a Fe-PW12dual-metal-site as a model (FePW), we demonstrate a A-C DMS nanoscale localized carbon nitride (A-C/g-C3N4) exhibiting a highly enhanced photocatalytic activity with a high product yield (86% conversion), selectivity (up to 99%), and a wide functional group tolerance (52 examples). The carbon nitride performs the roles of both the visible light response, and improves the selectivity for the oxidation of C(sp3)-H bonds to carbonyl groups, along with the function of A-C DMS in promoting product yield. Mechanistic studies indicate that this reaction follows a radical pathway catalyzed by a photogenerated electron and hole on A-C/g-C3N4that is mediated by thetBuO˙ andtBuOO˙ radicals. Notably, a 10 g scale reaction was successfully achieved for alkane photocatalytic oxidation to the corresponding product with a good yield (80% conversion), and high selectivity (95%) under natural sunlight at ambient temperature. In addition, this A-C/g-C3N4photocatalyst is highly robust and can be reused at least six times and the activity is maintained.
- Duan, Limei,Li, Peihe,Li, Wanfei,Liu, Jinghai,Liu, Ying,Liu, Zhifei,Lu, Ye,Sarina, Sarina,Wang, Jinghui,Wang, Yin,Wang, Yingying,Zhu, Huaiyong
-
p. 4429 - 4438
(2021/07/12)
-
- Oxidation of Alkenes by Water with H2 Liberation
-
Oxidation by water with H2 liberation is highly desirable, as it can serve as an environmentally friendly way for the oxidation of organic compounds. Herein, we report the oxidation of alkenes with water as the oxidant by using a catalyst combination of a dearomatized acridine-based PNP-Ru complex and indium(III) triflate. Compared to traditional Wacker-type oxidation, this transformation avoids the use of added chemical oxidants and liberates hydrogen gas as the only byproduct.
- Ben-David, Yehoshoa,Milstein, David,Tang, Shan
-
supporting information
p. 5980 - 5984
(2020/04/27)
-
- Catalytic Oxidative Deamination by Water with H2Liberation
-
Selective oxidative deamination has long been considered to be an important but challenging transformation, although it is a common critical process in the metabolism of bioactive amino compounds. Most of the synthetic methods developed so far rely on the use of stoichiometric amounts of strong and toxic oxidants. Here we present a green and efficient method for oxidative deamination, using water as the oxidant, catalyzed by a ruthenium pincer complex. This unprecedented reaction protocol liberates hydrogen gas and avoids the use of sacrificial oxidants. A wide variety of primary amines are selectively transformed to carboxylates or ketones in good to high yields. It is noteworthy that mechanistic experiments and DFT calculations indicate that in addition to serving as the oxidant, water also plays an important role in assisting the hydrogen liberation steps involved in amine dehydrogenation.
- Tang, Shan,Rauch, Michael,Montag, Michael,Diskin-Posner, Yael,Ben-David, Yehoshoa,Milstein, David
-
supporting information
p. 20875 - 20882
(2020/12/23)
-
- Catalytic Acceptorless Dehydrogenation of Aliphatic Alcohols
-
We developed the first acceptorless dehydrogenation of aliphatic secondary alcohols to ketones under visible light irradiation at room temperature by devising a ternary hybrid catalyst system comprising a photoredox catalyst, a thiophosphate organocatalyst, and a nickel catalyst. The reaction proceeded through three main steps: hydrogen atom transfer from the α-C-H bond of an alcohol substrate to the thiyl radical of the photo-oxidized organocatalyst, interception of the generated carbon-centered radical with a nickel catalyst, and β-hydride elimination. The reaction proceeded in high yield under mild conditions without producing side products (except H2 gas) from various alcohols, including sterically hindered alcohols, a steroid, and a pharmaceutical derivative. This catalyst system also promoted acceptorless cross-dehydrogenative esterification from aldehydes and alcohols through hemiacetal intermediates.
- Fuse, Hiromu,Mitsunuma, Harunobu,Kanai, Motomu
-
supporting information
p. 4493 - 4499
(2020/03/05)
-
- Palladium supported on a novel ordered mesoporous polypyrrole/carbon nanocomposite as a powerful heterogeneous catalyst for the aerobic oxidation of alcohols to carboxylic acids and ketones on water
-
Preparation of an ordered mesoporous polypyrrole/carbon (PPy/OMC) composite has been described through a two-step nanocasting process using KIT-6 as a template. Characterization of the PPy/OMC nanocomposite by various analysis methods such as TEM, XRD, TGA, SEM and N2 sorption confirmed the preparation of a material with ordered mesoporous structure, uniform pore size distribution, high surface area and high stability. This nanocomposite was then used for the immobilization of palladium nanoparticles. The nanoparticles were almost uniformly distributed on the support with a narrow particle size of 20-25 nm, confirmed by various analysis methods. Performance of the Pd?PPy/OMC catalyst was evaluated in the aerobic oxidation of various primary and secondary alcohols on water as a green solvent, giving the corresponding carboxylic acids and ketones in high yields and excellent selectivity. The catalyst could also be reused for at least 10 reaction runs without losing its catalytic activity and selectivity. High catalytic efficiency of the catalyst can be attributed to a strong synergism between the PPy/OMC and that of supported Pd nanoparticles.
- Ganji, Nasim,Karimi, Babak,Najafvand-Derikvandi, Sepideh,Vali, Hojatollah
-
p. 13616 - 13631
(2020/04/24)
-
- A sodium trifluoromethanesulfinate-mediated photocatalytic strategy for aerobic oxidation of alcohols
-
A sodium trifluoromethanesulfinate-mediated photocatalytic strategy for the aerobic oxidation of alcohols has been developed for the first time, and the photoredox aerobic oxidation of secondary and primary alcohols provided the corresponding ketones and carboxylic acids, respectively, in high to excellent yields.
- Zhu, Xianjin,Liu, Can,Liu, Yong,Yang, Haijun,Fu, Hua
-
p. 12443 - 12446
(2020/10/30)
-
- Design and synthesis of a versatile cooperative catalytic aerobic oxidation system with co-immobilization of palladium nanoparticles and laccase into the cavities of MCF
-
We have designed a versatile reusable cooperative catalyst oxidation system, consisting of palladium nanoparticles and laccase with unprecedented reactivity. This biohybrid catalyst was synthesized by the stepwise immobilization of laccase as an enzyme and Pd as a nanometallic component into the same cavity of siliceous mesocellular foams (MCF). MCF and nanobiohybrid catalyst were characterized by BET, SAXS, SEM, EDX elemental mapping, ICP-OES, TEM, TGA, FT-IR, and XPS techniques and the stepwise immobilization of laccase enzyme and Pd onto MCF was evaluated through several compelling electrochemical studies. The present catalytic system exhibits high activity toward (i) aerobic oxidation of alcohols to the corresponding carbonyl compounds, (ii) aerobic oxidation of cyclohexanol and cyclohexanone to phenol and (iii) aerobic dehydrogenation of important N-heteocyclic compounds (tetrahydro quinazolines, quinazolonones, pyrazolines and 1,4-diydropyridines) in the presence of catalytic amount of hydroquinone (HQ) as mediator in phosphate buffer (0.1 M, pH 4.5, 4 mL)/THF (4%, 1 mL) as solvent under mild conditions. The immobilization of both oxygen-activating catalyst (laccase) and oxidizing catalyst (Pd) onto the same support makes the present catalyst system superior to other currently available heterogeneous palladium based catalytic aerobic oxidation systems.
- Moradi, Sirvan,Shokri, Zahra,Ghorashi, Nadya,Navaee, Aso,Rostami, Amin
-
p. 305 - 319
(2020/01/21)
-
- Acceptorless dehydrogenation of amines and alcohols using simple ruthenium chloride
-
A highly efficient, economic and environmental friendly catalyst system has been developed for the dehydrogenation of alcohols and amines using simple RuCl3·nH2O and N-benzylhexamethylenetetramine. The in situ catalyst system efficiently oxidized the primary and secondary amines and secondary alcohols into nitrile, imine and ketone products, respectively in moderate to excellent yields. The developed catalyst system was also found to be efficient for the dehydrogenation of N-heterocyles. A detailed mechanism study revealed the first example of N-benzylhexamethylenetetramine (HMTA-Bz) being simultaneously acting as base, reducing agent and hydride source to generate the [Ru(II)(H)2] species as the active catalyst. The mechanism studies also revealed both the alcohol and amine oxidation involves dehydrogenative pathway with the evolution of hydrogen as the only by-product. The developed catalyst system also provides possible platform for the release of hydrogen from liquid organic hydrogen carriers (LOHCs).
- Barteja, Parul,Devi, Preeti,Kannan, Muthukumar,Muthaiah, Senthilkumar
-
-
- Reductive Electrochemical Activation of Molecular Oxygen Catalyzed by an Iron-Tungstate Oxide Capsule: Reactivity Studies Consistent with Compound i Type Oxidants
-
The reductive activation of molecular oxygen catalyzed by iron-based enzymes toward its use as an oxygen donor is paradigmatic for oxygen transfer reactions in nature. Mechanistic studies on these enzymes and related biomimetic coordination compounds designed to form reactive intermediates, almost invariably using various "shunt" pathways, have shown that high-valent Fe(V)=O and the formally isoelectronic Fe(IV) =O porphyrin cation radical intermediates are often thought to be the active species in alkane and arene hydroxylation and alkene epoxidation reactions. Although this four decade long research effort has yielded a massive amount of spectroscopic data, reactivity studies, and a detailed, but still incomplete, mechanistic understanding, the actual reductive activation of molecular oxygen coupled with efficient catalytic transformations has rarely been experimentally studied. Recently, we found that a completely inorganic iron-tungsten oxide capsule with a keplerate structure, noted as {Fe30W72}, is an effective electrocatalyst for the cathodic activation of molecular oxygen in water leading to the oxidation of light alkanes and alkenes. The present report deals with extensive reactivity studies of these {Fe30W72} electrocatalytic reactions showing (1) arene hydroxylation including kinetic isotope effects and migration of the ipso substituent to the adjacent carbon atom ("NIH shift"); (2) a high kinetic isotope effect for alkyl C - H bond activation; (3) dealkylation of alkylamines and alkylsulfides; (4) desaturation reactions; (5) retention of stereochemistry in cis-alkene epoxidation; and (6) unusual regioselectivity in the oxidation of cyclic and acyclic ketones, alcohols, and carboxylic acids where reactivity is not correlated to the bond disassociation energy; the regioselectivity obtained is attributable to polar effects and/or entropic contributions. Collectively these results also support the conclusion that the active intermediate species formed in the catalytic cycle is consistent with a compound I type oxidant. The activity of {Fe30W72} in cathodic aerobic oxidation reactions shows it to be an inorganic functional analogue of iron-based monooxygenases.
- Bugnola, Marco,Shen, Kaiji,Haviv, Eynat,Neumann, Ronny
-
p. 4227 - 4237
(2020/05/05)
-
- H2-free Synthesis of Aromatic, Cyclic and Linear Oxygenates from CO2
-
The synthesis of oxygenate products, including cyclic ketones and phenol, from carbon dioxide and water in the absence of gas-phase hydrogen has been demonstrated. The reaction takes place in subcritical conditions at 300 °C and pressure at room temperature of 25 barg. This is the first observation of the production of cyclic ketones by this route and represents a step towards the synthesis of valuable intermediates and products, including methanol, without relying on fossil sources or hydrogen, which carries a high carbon footprint in its production by conventional methods. Inspiration for these studies was taken directly from natural processes occurring in hydrothermal environments around ocean vents. Bulk iron and iron oxides were investigated to provide a benchmark for further studies, whereas reactions over alumina and zeolite-based catalysts were employed to demonstrate, for the first time, the ability to use catalyst properties such as acidity and pore size to direct the reaction towards specific products. Bulk iron and iron oxides produced methanol as the major product in concentrations of approximately 2–3 mmol L?1. By limiting the hydrogen availability through increasing the initial CO2/H2O ratio the reaction could be directed to yield phenol. Alumina and zeolites were both observed to enhance the production of longer-chained species (up to C8), likely owing to the role of acid sites in catalysing rapid oligomerisation reactions. Notably, zeolite-based catalysts promoted the formation of cyclic ketones. These proof-of-concept studies show the potential of this process to contribute to sustainable development through either targeting methanol production as part of a “methanol economy” or longer-chained species including phenol and cyclic ketones.
- Gomez, Laura Quintana,Shehab, Amal K.,Al-Shathr, Ali,Ingram, William,Konstantinova, Mariia,Cumming, Denis,McGregor, James
-
p. 647 - 658
(2020/01/24)
-
- Method for catalytic oxidation of cycloalkane by confinement porphyrin Co (II)
-
The invention relates to a method for catalytic oxidation of cycloalkane by confinement porphyrin Co (II). The method comprises the following steps: dispersing confinement cobalt porphyrin (II) in cycloalkane, sealing the reaction system, heating to 100-130 DEG C while stirring, introducing oxygen to 0.2-3.0 MPa, keeping the set temperature and oxygen pressure, stirring to react for 3.0-24.0 h, and carrying out post-treatment on a reaction solution to obtain products naphthenic alcohol and naphthenic ketone. The method achieves high selectivity of naphthenic alcohol and naphthenic ketone, andeffectively inhibits the generation of aliphatic diacid. The aliphatic diacid is low in selectivity, so that the continuity of the cycloalkane oxidation process and the separation of the products arefacilitated; the method has the potential of solving the problem that naphthenic alcohol and naphthenic ketone are easily and deeply oxidized to generate aliphatic diacid in the industrial cycloalkanecatalytic oxidation process; and the method is a novel efficient and feasible method for selective catalytic oxidation of cycloalkane.
- -
-
Paragraph 0069; 0070
(2020/05/01)
-
- Confinement porphyrin Co (II), and preparation method and application thereof
-
Confinement porphyrin Co (II). A preparation method includes: under acidic condition, performing condensation on aromatic aldehyde and pyrrole in equal molar ratio to obtain a phenylporphyrin compound, and carrying out metallization in a chloroform-methanol solution to obtain porphyrin Cu (II), performing bromination and demetalization by perchloric acid to obtain confinement porphyrin, performingstirring reflux on the confinement porphyrin in a methanol solution for 12.0-24.0 h to obtain confinement porphyrin Co (II). An application includes: dissolving the confinement porphyrin Co (II) in naphthenic hydrocarbon and sealing the reaction system, stirring and heating the reaction system to 100-130 DEG C and feeding oxygen to 0.2-3.0 MPa; maintaining the set temperature and oxygen pressureand performing a stirring reaction for 3.0-24.0 h; performing after treatment on the reaction liquid to prepare the product. In the invention, generation of fatty diacid is effectively inhibited, andcontinuity of a naphthenic hydrocarbon oxidization process and product separation is facilitated. The invention has the potential of solving the problem that naphthene alcohols and naphthene ketones are liable to undergo deep oxidization and form the fatty diacid in an industrial naphthenic hydrocarbon catalytic oxidation process.
- -
-
Paragraph 0101-0102
(2020/04/17)
-
- Catalytic oxidation of cycloalkanes by porphyrin cobalt(II) through efficient utilization of oxidation intermediates
-
The catalytic oxidation of cycloalkanes using molecular oxygen employing porphyrin cobalt(II) as catalyst was enhanced through use of cycloalkyl hydroperoxides, which are the primary intermediates in oxidation of cycloalkanes, as additional oxidants to further oxidize cycloalkanes in the presence of porphyrin copper(II), especially for cyclohexane, for which the selectivity was enhanced from 88.6 to 97.2% to the KA oil; at the same time, the conversion of cyclohexane was enhanced from 3.88 to 4.41%. The enhanced efficiency and selectivity were mainly attributed to the avoided autoxidation of cycloalkanes and efficient utilization of oxidation intermediate cycloalkyl hydroperoxides as additional oxidants instead of conventional thermal decomposition. In addition to cyclohexane, the protocol presented in this research is also very applicable in the oxidation of other cycloalkanes such as cyclooctane, cycloheptane and cyclopentane, and can serve as a applicable and efficient strategy to boost the conversion and selectivity simultaneously in oxidation of alkanes. This work also is a very important reference for the extensive application of metalloporphyrins in catalysis chemistry.
- Shen, Hai M.,Wang, Xiong,Guo, A. Bing,Zhang, Long,She, Yuan B.
-
p. 1166 - 1173
(2020/09/17)
-
- Method for synergistically catalyzing and oxidizing cycloparaffin through confined metalloporphyrin cobalt (II)/Cu (II) salt
-
The invention discloses a method for synergistically catalyzing and oxidizing cycloparaffin through confined metalloporphyrin cobalt (II)/Cu (II) salt. The preparation method comprises the following steps: dispersing confined metalloporphyrin cobalt (II) (0.001%-5%, g/mol) and Cu (II) salt (0.01%-10%, mol/mol) into cycloparaffin; and sealing the reaction system, heating the temperature to 90-150 DEG C while stirring, introducing an oxidant, keeping the set temperature and pressure, carrying out stirring and reacting for 2.0-24.0 hours, and carrying out after-treatment on the reaction solutionto obtain the products cycloalkyl alcohol and cycloalkyl ketone. The method disclosed by the invention has the advantages of high cycloalkyl alcohol and cycloalkyl ketone selectivity, low reaction temperature, few byproducts, small environmental influence and the like. In addition, the content of cycloalkyl hydroperoxide is low, and the safety coefficient is high. The invention provides an efficient, feasible and safe method for synthesizing cycloalkyl alcohol and cycloalkyl ketone through selective catalytic oxidation of cycloparaffin.
- -
-
Paragraph 0043-0044
(2020/12/10)
-
- Site-specific catalytic activities to facilitate solvent-free aerobic oxidation of cyclohexylamine to cyclohexanone oxime over highly efficient Nb-modified SBA-15 catalysts
-
The development of highly active and selective heterogeneous catalysts for efficient oxidation of cyclohexylamine to cyclohexanone oxime is a challenge associated with the highly sensitive nitrogen center of cyclohexylamine. In this work, dispersed Nb oxide supported on SBA-15 catalysts are disclosed to efficiently catalyze the selective oxidation of cyclohexylamine with high conversion (>75%) and selectivity (>84%) to cyclohexanone oxime by O2without any addition of solvent (TOF = 469.8 h?1, based on the molar amount of Nb sites). The role of the active-site structure identity in dictating the site-specific catalytic activities is probed with the help of different reaction and control conditions and multiple spectroscopy methods. Complementary to the experimental results, further poisoning tests (with KSCN or dehydroxylation reagents) and DFT computational studies clearly unveil that the surface exposed active centers toward activation of the reactants are quite different: the surface -OH groups can catch the NH2group from cyclohexylamine by forming a hydrogen bond and lead to a more facile cyclohexylamine oxidation to desired products, while the monomeric or oligomeric Nb sites with a highly distorted structure play a key role in the dissociation of O2molecules beneficial for insertion of active oxygen species into cyclohexylamine. These catalysts exhibit not only satisfactory recyclability for cyclohexylamine oxidation but also efficiently catalyze the aerobic oxidation of a wide range of amines under solvent-free conditions.
- Ding, Wei,Mao, Liqiu,Peng, Haoyu,Yin, Dulin,Zhong, Wenzhou
-
p. 3409 - 3422
(2020/06/09)
-
- Propargyl alcohols as alkyne sources: Synthesis of heterocyclic compounds under microwave irradiation
-
Fused heterocyclic compounds with alkyne substituent, have been achieved using a domino microwave-assisted [Pd]-catalysis. Interestingly, tert-propargyl alcohols underwent a selective degradative β-carbon cleavage and served as masked alkynyl equivalents, in water as the sole reaction medium. Dihydrobenzofurans, indolines, and oxindoles have been accomplished using this dual C–C bond-forming strategy.
- Ramesh, Karu,Satyanarayana, Gedu
-
-
- Efficient Palladium(0) supported on reduced graphene oxide for selective oxidation of olefins using graphene oxide as a ‘solid weak acid’
-
Selective oxidation of olefin derivatives to ketones has made innovative development over palladium(0) supported on reduced graphene oxide. Compared to traditional Wacker oxidation, the novel method offers an economical and environment-friendly option by using graphene oxide (GO) as a ‘solid weak acid’ instead of classical homogeneous catalysts like H2SO4 and CF3COOH. X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscope and transmission electron microscopy images of Pd0/RGO showed that the nanoscaled Pd particles generated at the flake structure of reduced graphene oxide. Under optimized condition, up to 44 kinds of ketones with different structures can be prepared with excellent yields.
- Gao, Xi,Zhou, Jianhao,Peng, Xinhua
-
-
- Sequential Reduction of Nitroalkanes Mediated by CS2 and Amidine/Guanidine Bases: A Controllable Nef Reaction
-
In this letter, we describe a mild, functional group-tolerant reductive Nef reaction that utilizes CS2 and an amidine or guanidine base to sequentially cleave N-O bonds. These conditions transform secondary nitroalkanes to ketones via an isolable oxime with minimal erosion at labile stereogenic carbons, show excellent compatibility with groups sensitive to oxidizing or reducing conditions, display good scalability, and are well-suited for generating useful 3-pyrrolidinone motifs from readily accessible 1,3-dipolar cycloaddition products.
- Ju, Minsoo,Guan, Weiyang,Schomaker, Jennifer M.,Harper, Kaid C.
-
p. 8893 - 8898
(2019/11/11)
-
- On/Off O2 Switchable Photocatalytic Oxidative and Protodecarboxylation of Carboxylic Acids
-
Photoredox catalysis in recent years has manifested a powerful branch of science in organic synthesis. Although merging photoredox and metal catalysts has been a widely used method, switchable heterogeneous photoredox catalysis has rarely been considered. Herein, we open a new window to use a switchable heterogeneous photoredox catalyst which could be turned on/off by changing a simple stimulus (O2) for two opponent reactions, namely, oxidative and protodecarboxylation. Using this strategy, we demonstrate that Au@ZnO core-shell nanoparticles could be used as a switchable photocatalyst which has good catalytic activity to absorb visible light due to the localized surface plasmon resonance effect of gold, can decarboxylate a wide range of aromatic and aliphatic carboxylic acids, have multiple reusability, and are a reasonable candidate for synthesizing both aldehydes/ketones and alkane/arenes in a large-scale set up. Some biologically active molecules are also shown via examples of the direct oxidative and protodecarboxylation which widely provided pharmaceutical agents.
- Bazyar, Zahra,Hosseini-Sarvari, Mona
-
p. 13503 - 13515
(2019/10/11)
-
- SYNTHESIS OF HYPERVALENT IODINE REAGENTS WITH DIOXYGEN
-
Methods of synthesis of hypervalent iodine reagents and methods for oxidation of organic compounds are disclosed.
- -
-
Paragraph 0144-0147; 0150
(2019/01/15)
-
- New copper(II) coordination compounds assembled from multifunctional pyridine-carboxylate blocks: Synthesis, structures, and catalytic activity in cycloalkane oxidation
-
Two new copper(II) coordination compounds, namely a 1D coordination polymer [Cu(μ-cpna)(phen)(H2O)]n (1) and a discrete tetracopper(II) derivative [Cu(phen)2(H2O)]2[Cu2(μ-Hdppa)2(Hdppa)2] (2), were hydrothermally synthesized from copper(II) chloride as a metal source, 5-(4-carboxyphenoxy)nicotinic acid (H2cpna) or 5-(3,4-dicarboxylphenyl)picolinic acid (H3dppa) as a principal building block, and 1,10-phenanthroline (phen) as a crystallization mediator. Compounds 1 and 2 were isolated as air-stable microcrystalline solids and fully characterized by elemental and thermogravimetric analyses, IR spectroscopy, powder and single-crystal X-ray diffraction. In the solid state, the structure of 1 discloses the linear interdigitated 1D coordination polymer chains with the 2C1 topology. The crystal structure of an ionic derivative 2 shows that the mono-and dicopper(II) units are extended into the intricate 1D hydrogen-bonded chains with the SP 1-periodic net (4,4)(0,2) topology. Thermal stability and catalytic properties of 1 and 2 were also investigated. In fact, both Cu derivatives act as efficient homogeneous catalysts (catalyst precursors) for the mild oxidation of cycloalkanes by hydrogen peroxide to give the corresponding alcohols and ketones; the substrate scope and the effects of type and amount of acid promoter as well as bond-, regio-, and stereo-selectivity features were investigated.
- Zhao, Na,Li, Yu,Gu, Jinzhong,Fernandes, Tiago A.,Kirillova, Marina V.,Kirillov, Alexander M.
-
-
- Metal-Organic Architectures Assembled from Multifunctional Polycarboxylates: Hydrothermal Self-Assembly, Structures, and Catalytic Activity in Alkane Oxidation
-
A three-component aqueous reaction system comprising copper(II) acetate (metal node), poly(carboxylic acid) with a phenylpyridine or biphenyl core (main building block), and 1,10-phenanthroline (crystallization mediator) was investigated under hydrothermal conditions. As a result, four new coordination compounds were self-assembled, namely, {[Cu(μ3-cpna)(phen)]·H2O}n (1), {[Cu(μ-Hbtc)(phen)]·H2O}n (2), {[Cu(μ3-Hcpic)(phen)]·2H2O}n (3), and [Cu6(μ-Hcptc)6(phen)6]·6H2O (4), where H2cpna = 5-(2′-carboxylphenyl)nicotinic acid, H3btc = biphenyl-2,4,4′-tricarboxylic acid, H3cpic = 4-(5-carboxypyridin-2-yl)isophthalic acid, H3cptc = 2-(4-carboxypyridin-3-yl)terephthalic acid, and phen = 1,10-phenanthroline. Crystal structures of compounds 1-3 reveal that they are 1D coordination polymers with a ladder, linear, or double-chain structure, while product 4 is a 0D hexanuclear complex. All of the structures are extended further [1D a?' 2D (1 and 2), 1D a?' 3D (3), and 0D a?' 3D (4)] into hydrogen-bonded networks. The type of a multicarboxylate building block has a considerable effect on the final structures of 1-4. The magnetic behavior and thermal stability of 1-4 were also investigated. Besides, these copper(II) derivatives efficiently catalyze the oxidation of cycloalkanes with hydrogen peroxide under mild conditions. The obtained products are the unique examples of copper derivatives that were assembled from H2cpna, H3btc, H3cpic, and H3cptc, thus opening up their use as multicarboxylate ligands toward the design of copper-organic architectures.
- Gu, Jinzhong,Wen, Min,Cai, Yan,Shi, Zifa,Arol, Aliaksandr S.,Kirillova, Marina V.,Kirillov, Alexander M.
-
p. 2403 - 2412
(2019/02/28)
-
- Mild C-H functionalization of alkanes catalyzed by bioinspired copper(ii) cores
-
Three new copper(ii) coordination compounds formulated as [Cu(H1.5bdea)2](hba)·2H2O (1), [Cu2(μ-Hbdea)2(aca)2]·4H2O (2), and [Cu2(μ-Hbdea)2(μ-bdca)]n (3) were generated by aqueous medium self-assembly synthesis from Cu(NO3)2, N-butyldiethanolamine (H2bdea) as a main N,O-chelating building block and different carboxylic acids [4-hydroxybenzoic (Hhba), 9-anthracenecarboxylic (Haca), or 4,4′-biphenyldicarboxylic (H2bdca) acid] as supporting carboxylate ligands. The structures of products range from discrete mono- (1) or dicopper(ii) (2) cores to a 1D coordination polymer (3), and widen a family of copper(ii) coordination compounds derived from H2bdea. The obtained compounds were applied as bioinspired homogeneous catalysts for the mild C-H functionalization of saturated hydrocarbons (cyclic and linear C5-C8 alkanes). Two model catalytic reactions were explored, namely the oxidation of hydrocarbons with H2O2 to a mixture of alcohols and ketones, and the carboxylation of alkanes with CO/S2O82- to carboxylic acids. Both processes proceed under mild conditions with a high efficiency and the effects of different parameters (e.g., reaction time and presence of acid promoter, amount of catalyst and solvent composition, substrate scope and selectivity features) were studied and discussed in detail. In particular, an interesting promoting effect of water was unveiled in the oxidation of cyclohexane that is especially remarkable in the reaction catalyzed by 3, thus allowing a potential use of diluted, in situ generated solutions of hydrogen peroxide. Moreover, the obtained values of product yields (up to 41% based on alkane substrate) are very high when dealing with the C-H functionalization of saturated hydrocarbons and the mild conditions of these catalytic reactions (50-60 °C, H2O/CH3CN medium). This study thus contributes to an important field of alkane functionalization and provides a notable example of new Cu-based catalytic systems that can be easily generated by self-assembly from simple and low-cost chemicals.
- Kirillova, Marina V.,Fernandes, Tiago A.,André, Vania,Kirillov, Alexander M.
-
supporting information
p. 7706 - 7714
(2019/08/30)
-
- Method for (II) preparing/cycloalkanol and cycloalkanone by synergetic (II) catalysis of molecular oxygen-selective oxidation of cycloalkane by using cobalt salt, namely, zinc salt of zinc salt (by machine translation)
-
In a stainless steel (II) high /(II) pressure reaction kettle with a polytetrafluoroethylene inner container, the cobalt salt is stirred and heated at room temperature to give an oxidant oxygen (II); a set temperature (II) and an oxygen pressure stirring reaction are kept; and the reaction (II) mixture/is (II) stirred and reduced to generate a peroxide, namely cycloalkanol and cycloalkanone (II)/(II). The catalyst has the advantages of cheap and easily available catalyst, low synthesis cost, high selectivity, effective inhibition of generation of aliphatic diacid, low selectivity of aliphatic diacid, and facilitation of serialization of the naphthenic acid process and separation of products. (by machine translation)
- -
-
-
- Electrochemical performance of ABNO for oxidation of secondary alcohols in acetonitrile solution
-
The ketones was successfully prepared from secondary alcohols using 9-azabicyclo[3.3.1]nonane-N-oxyl (ABNO) as the catalyst and 2,6-lutidine as the base in acetonitrile solution. The electrochemical activity of ABNO for oxidation of 1-phenylethanol was investigated by cyclic voltammetry, in situ Fourier transform infrared spectroscopy (FTIR) and constant current electrolysis experiments. The resulting cyclic voltammetry indicated that ABNO exhibited much higher electrochemical activity when compared with 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) under the similar conditions. A reasonable reaction mechanism of the electrocatalytic oxidation of 1-phenylethanol to acetophenone was proposed. In addition, a series of secondary alcohols could be converted to the corresponding ketones at room temperature in 80-95% isolated yields.
- Niu, Pengfei,Liu, Xin,Shen, Zhenlu,Li, Meichao
-
-
- Metal-free mechanochemical oxidations in Ertalyte jars
-
The authors acknowledge Form-Tech Scientific for the loan of the FTS-1000 Shaker Mill apparatus (Form-Tech Scientific, Canada, https://formtechscientific.com/). Authors are grateful to MIUR (Italy, PRIN project: multifunctional polymer composites based on grown materials). A. P. is grateful to MIUR for “Finanziamento delle Attività Base di Ricerca (FABR 2017)“.
- Porcheddu, Andrea,Delogu, Francesco,De Luca, Lidia,Fattuoni, Claudia,Colacino, Evelina
-
supporting information
p. 1786 - 1794
(2019/08/07)
-
- Aerobic Oxidation of Secondary Alcohols with Nitric Acid and Iron(III) Chloride as Catalysts in Fluorinated Alcohol
-
Fluorinated alcohols as solvents strongly influence and direct chemical reaction through donation of strong hydrogen bonds while being weak acceptors. We used 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) as the activating solvent for a nitric acid and FeCl3-catalyzed aerobic oxidation of secondary alcohols to ketones. Reaction proceeded selectively with excellent yields with no reaction on the primary alcohol group. Oxidation of benzyl alcohols proceeds selectively to aldehydes with only HNO3 as the catalyst, while reaction on tertiary alcohols proceeds through dehydration and dimerization. A mechanistic study showed in situ formation of NOCl that converts alcohol into alkyl nitrite, which in the presence of Fe3+ ions and fluorinated alcohol decomposes into ketone. The study indicates that iron(III) acts also as the single-electron transfer catalyst in regeneration of NOCl reactive species.
- Mo?ina, ?tefan,Iskra, Jernej
-
p. 14579 - 14586
(2019/11/14)
-
- Table salt as a catalyst for the oxidation of aromatic alcohols and amines to acids and imines in aqueous medium: Effectively carrying out oxidation reactions in sea water
-
A simple, efficient, sustainable and economical method for the oxidation of alcohols and amines has been developed based on chloride, a sea abundant anionic catalyst for the practical synthesis of a wide range of carboxylic acids, ketones and imines. Oxidation of aromatic alcohols was carried out using NaCl (20 mol%) as the catalyst, NaOH (50 mol%) and aq. TBHP (4 equiv.) as the oxidant in 55-92% isolated yields. Oxidation of aromatic amines to imines was achieved by using only 20 mol% of NaCl and aq. TBHP (4 equiv.) in 32-93% isolated yields. The chlorine species formed during the reaction as the active oxidation catalyst has been identified as ClO2- for alcohols and ClO-/ClO2- for amines by control experiments. This method is mostly free from chromatographic purification, which makes it suitable for large-scale synthesis. We have scaled up to 30 gram scale the synthesis of carboxylic acids and imines in good yields and have also carried out efficiently this new method using filtered sea water as the solvent and catalyst.
- Hazra, Susanta,Kushawaha, Ajay Kishor,Yadav, Deepak,Dolui, Pritam,Deb, Mayukh,Elias, Anil J.
-
supporting information
p. 1929 - 1934
(2019/04/29)
-
- Methanol as hydrogen source: Chemoselective transfer hydrogenation of α,β-unsaturated ketones with a rhodacycle
-
Methanol is a safe, economic and easy-to-handle hydrogen source. It has rarely been used in transfer hydrogenation reactions, however. We herein report that a cyclometalated rhodium complex, rhodacycle, catalyzes highly chemoselective hydrogenation of α,β-unsaturated ketones with methanol as the hydrogen source. A wide variety of chalcones, styryl methyl ketones and vinyl methyl ketones, including sterically demanding ones, were reduced to the saturated ketones in refluxing methanol in a short reaction time, with no need for inter gas protection, and no reduction of the carbonyl moieties was observed. The catalysis described provides a practically easy and operationally safe method for the reduction of olefinic bonds in α,β-unsaturated ketone compounds.
- Aboo, Ahmed H.,Begum, Robina,Zhao, Liangliang,Farooqi, Zahoor H.,Xiao, Jianliang
-
p. 1795 - 1799
(2019/11/11)
-
- A mild reaction condition cyclohepta and catalytic oxidation method (by machine translation)
-
A cyclohepta and catalytic oxidation method, said method comprising: the metal porphyrin, cyclohepta mixing, at a temperature of 80 - 120 °C, O2 The pressure 0.6 - 2 mpa reaction under the condition of 2 - 48 H-, after processing reaction liquid, separating the oxidation product [...], suberyl alcohol, [...]; the invention relates to a new method of cyclohepta and catalytic oxidation reaction temperature is low, the catalyst amount is less, but in order to O2 As the oxidizing agent, environmental protection, can be the highly selective oxidation as cyclohepta suberyl alcohol, and [...] suberone cycloheptanone, the cyclohepta and catalytic oxidation of the new method is also easy to operate, and does not use organic solvent, suberone cycloheptanone selectivity and the like. (by machine translation)
- -
-
Paragraph 0015; 0016; 0017; 0018; 0019; 0020; 0021-0040
(2019/04/02)
-
- Method for preparing naphthenic alcohol and naphthenone by using molecular oxygen to selectively oxidize naphthenic hydrocarbon under synergistic catalysis of cobalt (II) salt/copper (II) salt
-
The invention provides a method for preparing naphthenic alcohol and naphthenone by using molecular oxygen to selectively oxidize naphthenic hydrocarbon under synergistic catalysis of a cobalt (II) salt/copper (II) salt. The method comprises the following steps: in an agate ball-milling tank, ball-milling a main catalyst cobalt (II) salt and a cocatalyst copper (II) salt at room temperature according to a molar ratio to obtain a cobalt (II) salt/copper (II) salt composite catalyst; in a stainless steel high-pressure reaction kettle with a polytetrafluoroethylene liner, dispersing the cobalt (II) salt/copper (II) salt composite catalyst into the naphthenic hydrocarbon, sealing the reaction kettle, conducting stirring and heating, and introducing an oxidizing agent oxygen; maintaining a settemperature and oxygen pressure to perform stirring reaction; and after the reaction, adding triphenylphosphine into a reaction mixture, and conducting stirring to reduce a generated peroxide at roomtemperature, so as to obtain the naphthenic alcohol and the naphthenone. The catalyst is cheap and easily available and the synthesis cost is low; the selectivity is high and generation of aliphatic diacid is effectively inhibited; and the aliphatic diacid selectivity is low, and continuity of the naphthenic hydrocarbon oxidization process and separation of products are facilitated.
- -
-
Paragraph 0106-0107
(2020/01/03)
-
- Method for synergistically catalyzing and oxidizing cycloalkane by porphyrin cobalt (II)/zinc (II) salt
-
The invention discloses a method for synergistically catalyzing and oxidizing cycloalkane by porphyrin cobalt (II)/zinc (II) salt. The method comprises the following steps: dispersing porphyrin cobalt(II) and a zinc (II) salt in cycloalkane, sealing the reaction system, carrying out heating to 100-130 DEG C while stirring, introducing oxygen to 0.2-3 MPa, keeping a set temperature and oxygen pressure, carrying out stirring for reacting for 3-24 hours, and then carrying out after-treatment on the reaction solution to obtain product naphthenic alcohol and naphthenic ketone. According to the method disclosed by the invention, the naphthenic alcohol and the naphthenic ketone are high in selectivity, and generation of aliphatic diacid is effectively inhibited; a cocatalyst is cheap and is easily available, and synthesis cost of the naphthenic alcohol and naphthenic ketone is low; the aliphatic diacid is low in selectivity, so that continuity of a cycloalkane oxidation process and separation of products are facilitated; and the method has a potential of solving the problem that naphthenic alcohol and naphthenic ketone are easily and deeply oxidized to generate aliphatic diacid in industrial cycloalkane catalytic oxidation processes. The method is a novel efficient feasible method for selective catalytic oxidation of cycloalkane.
- -
-
Paragraph 0085; 0086
(2019/12/25)
-
- Method for preparing lactone compound by cycloalkane compound through oxidation
-
The invention discloses a method for preparing a lactone compound by a cycloalkane compound through oxidation. The method comprises the following steps of using the cycloalkane compound as the raw material, and further oxidizing by a catalysis system under the oxygen-containing atmosphere, so as to obtain the lactone compound, wherein the catalysis system comprises a catalyst and an additive; thecatalyst is selected from a cyclic organic nitrogen and oxygen free radical precursor in formulas (I), (II), (III) and (IV); in the formula, R1, R2 and R3 are independently selected from hydrogen atom, alkyl, cycloalkyl, aryl, heterocycle, hydroxyl, nitryl, or halogen, or at least two of R1, R2 and R3 form loops; the additive is selected from an aldehyde compound. The preparation method has the advantages that the corresponding lactone is prepared by the cycloalkane compound through a one-step method; the conditions are mild, the safety is high, and the metal catalytic oxidization is avoided;the selectivity of the target product, namely the lactone compound, is high. The formulae are shown in the description.
- -
-
Paragraph 0064; 0065; 0116-0119
(2019/02/04)
-
- Direct Observation of Primary C?H Bond Oxidation by an Oxido-Iron(IV) Porphyrin π-Radical Cation Complex in a Fluorinated Carbon Solvent
-
Oxido-iron(IV) porphyrin π-radical cation species are involved in a variety of heme-containing enzymes and have characteristic oxidation states consisting of a high-valent iron center and a π-conjugated macrocyclic ligand. However, the short lifetime of the complex has hampered detailed reactivity studies. Reported herein is a remarkable increase in the lifetime (80 s at 10 °C) of FeIV(TMP+.)(O)(Cl) (2; TMP=5,10,15,20-tetramesitylporphyrin dianion), produced by the oxidation of FeIII(TMP)(Cl) (1) by ozone in α,α,α-trifluorotoluene (TFT). The lifetime is 720 times longer compared to that of the currently most stable species reported to date. The increase in the lifetime improves the reaction efficiency of 2 toward inert alkane substrates, and allowed observation of the reaction of 2 with a primary C?H bond (BDEC-H=ca. 100 kcal mol?1) directly. Activation parameters for cyclohexane hydroxylation were also obtained.
- Morimoto, Yuma,Shimaoka, Yuki,Ishimizu, Yuri,Fujii, Hiroshi,Itoh, Shinobu
-
supporting information
p. 10863 - 10866
(2019/07/17)
-
- Ruthenium Trichloride Catalyst in Water: Ru Colloids versus Ru Dimer Characterization Investigations
-
An easy-to-prepare ruthenium catalyst obtained from ruthenium(III) trichloride in water demonstrates efficient performances in the oxidation of several cycloalkanes with high selectivity toward the ketone. In this work, several physicochemical techniques were used to demonstrate the real nature of the ruthenium salt still unknown in water and to define the active species for this Csp3-H bond functionalization. From transmission electron microscopy analyses corroborated by SAXS analyses, spherical nanoobjects were observed with an average diameter of 1.75 nm, thus being in favor of the formation of reduced species. However, further investigations, based on X-ray scattering and absorption analyses, showed no evidence of the presence of a metallic Ru-Ru bond, proof of zerovalent nanoparticles, but the existence of Ru-O and Ru-Cl bonds, and thus the formation of a water-soluble complex. The EXAFS (extended X-ray absorption fine structure) spectra revealed the presence of an oxygen-bridged diruthenium complex [Ru(OH)xCl3-x]2(μ-O) with a high oxidation state in agreement with catalytic results. This study constitutes a significant advance to determine the true nature of the RuCl3·3H2O salt in water and proves once again the invasive nature of the electron beam in microscopy experiments, routinely used in nanochemistry.
- Lebedeva, Anastasia,Albuquerque, Brunno L.,Domingos, Josiel B.,Lamonier, Jean-Fran?ois,Giraudon, Jean-Marc,Lecante, Pierre,Denicourt-Nowicki, Audrey,Roucoux, Alain
-
p. 4141 - 4151
(2019/03/26)
-