93-61-8Relevant articles and documents
Additive-free selective methylation of secondary amines with formic acid over a Pd/In2O3 catalyst
Benaissa, Idir,Cantat, Thibault,Genre, Caroline,Godou, Timothé,Pinault, Mathieu
, p. 57 - 61 (2022/01/19)
Formic acid is used as the sole carbon and hydrogen source in the methylation of aromatic and aliphatic amines to methylamines. The reaction proceeds via a formylation/transfer hydrogenation pathway over a solid Pd/In2O3 catalyst without the need for any additive.
Unreactive C-N Bond Activation of Anilines via Photoinduced Aerobic Borylation
Ji, Shuohan,Luo, Lu,Qin, Shengxiang,Yin, Chunyu,Zhang, Hua
supporting information, (2021/12/27)
Unreactive C-N bond activation of anilines was achieved by photoinduced aerobic borylation. A diverse range of tertiary and secondary anilines were converted to aryl boronate esters in moderate to good yields with wide functional group tolerance under simple and ambient photochemical conditions. This transformation achieved the direct and facile C-N bond activation of unreactive anilines, providing a convenient and practical route transforming widely available anilines into useful aryl boronate esters.
Facile N-Formylation of Amines on Magnetic Fe3O4?CuO Nanocomposites
Datta Khanal, Hari,Mishra, Kanchan,Rok Lee, Yong
, p. 4477 - 4484 (2021/08/30)
A facile, eco-friendly, efficient, and recyclable heterogeneous catalyst is synthesized by immobilizing copper impregnated on mesoporous magnetic nanoparticles. The surface chemistry analysis of Fe3O4?CuO nanocomposites (NCs) by XRD and XPS demonstrates the synergistic effect between Fe3O4 and CuO nanoparticles, providing mass-transfer channels for the catalytic reaction. TEM images clearly indicate the impregnation of CuO onto mesoporous Fe3O4. This hydrothermally synthesized eco-friendly and highly efficient Fe3O4?CuO NCs are applied as a magnetically retrievable heterogeneous catalyst for the N-formylation of wide range of aliphatic, aromatic, polyaromatic and heteroaromatic amines using formic acid as a formylating agent at room temperature. The catalytic activity of the NCs for N-formylation is attributable to the synergistic effect between Fe3O4 and CuO nanoparticles. The N-formylated product is further employed for the synthesis of biologically active quinolone moieties.
Preparation and catalytic evaluation of a palladium catalyst deposited over modified clinoptilolite (Pd&at;MCP) for chemoselective N-formylation and N-acylation of amines
Amirsoleimani, Mina,Khalilzadeh, Mohammad A.,Zareyee, Daryoush
, (2020/08/22)
Novel palladium nanoparticles stabilized by clinoptilolite as a natural inexpensive zeolite prepared and used for N-formylation and N-acylation of amines at room temperature at environmentally benign reaction conditions in good to excellent yields. Pd (II) was immobilized on the surface of clinoptilolite via facile multi-step amine functionalization to obtain a sustainable, recoverable, and highly active nano-catalyst. The structural and morphological characterizations of the catalyst carried out using XRD, FT-IR, BET and TEM techniques. Moreover, the catalyst is easily recovered using simple filtration and reused for 7 consecutive runs without any loss in activity.
Catalyst-free photoinduced selective oxidative C(sp3)-C(sp3) bond cleavage in arylamines
Duan, Wentao,Lian, Qi,Wang, Songping,Wei, Wentao,Zhou, Jingwei
supporting information, p. 3261 - 3267 (2021/05/21)
Due to the directional nature of sp3-hybridized orbitals and the absence of π-orbitals, the oxidative cleavage of the kinetically and thermodynamically stable C(sp3)-C(sp3) bond is extremely difficult and remains scarcely explored. In this work, under the double argument of quantum mechanics (QM) computations and meticulous experiments on our well-designed C-C single bond cleavage mechanism, we discovered a means of photoinduced selective oxidative C(sp3)-C(sp3) bond cleavage in arylamines, easily achieved by simple visible light irradiation using O2as a benign oxidant under very mild conditions. The utility of our methodology was demonstrated by the C(sp3)-C(sp3) bond cleavage in morpholine/piperazine arylamines with excellent functional group tolerance. Importantly, our methodology is noteworthy, not only in that it does not require any catalysts, but also in that it provides valuable possibilities for the scalable functionalization of clinical drugs and natural products.
Olefin functionalized IPr.HCl monomer as well as preparation method and application thereof
-
Paragraph 0069-0073; 0075; 0078, (2021/06/21)
The invention relates to an olefin functionalized IPr.HCl monomer, a preparation method thereof, a method for preparing an N-heterocyclic carbene functionalized organic polymer (PS-IPr-x) by using the olefin functionalized IPr.HCl monomer, and application of the N-heterocyclic carbene functionalized organic polymer as a heterogeneous catalyst for catalyzing reduction N-formylation of carbon dioxide and amine. A heterogeneous catalyst is prepared by using cheap and easily available DVB as a polymerization cross-linking agent through an AIBN-initiated olefin polymerization method, and has the advantages of low preparation cost and simple preparation method. Meanwhile, the catalytic activity of the catalyst is obviously higher than that of reported catalysts, and the catalyst has a wide practical application prospect.
HCl-mediated transamidation of unactivated formamides using aromatic amines in aqueous media
Dhawan, Sanjeev,Girase, Pankaj Sanjay,Kumar, Vishal,Karpoormath, Rajshekhar
, p. 3729 - 3739 (2021/10/14)
We report transamidation protocol to synthesize a range of secondary and tertiary amides from weakly nucleophilic aromatic and hetero-aryl amines with low reactive formamide derivatives, utilizing hydrochloric acid as catalyst. This current acid mediated strategy is beneficial because it eliminates the need for a metal catalyst, promoter or additives in the reaction, simplifies isolation and purification. Notably, this approach conventionally used to synthesize molecules on gram scales with excellent yields and a high tolerance for functional groups.
Supported CuII Single-Ion Catalyst for Total Carbon Utilization of C2 and C3 Biomass-Based Platform Molecules in the N-Formylation of Amines
Brückner, Angelika,Dai, Xingchao,Kreyenschulte, Carsten,Rabeah, Jabor,Shi, Feng,Wang, Xinzhi
, p. 16889 - 16895 (2021/09/25)
The shift from fossil carbon sources to renewable ones is vital for developing sustainable chemical processes to produce valuable chemicals. In this work, value-added formamides were synthesized in good yields by the reaction of amines with C2 and C3 biomass-based platform molecules such as glycolic acid, 1,3-dihydroxyacetone and glyceraldehyde. These feedstocks were selectively converted by catalysts based on Cu-containing zeolite 5A through the in situ formation of carbonyl-containing intermediates. To the best of our knowledge, this is the first example in which all the carbon atoms in biomass-based feedstocks could be amidated to produce formamide. Combined catalyst characterization results revealed preferably single CuII sites on the surface of Cu/5A, some of which form small clusters, but without direct linking via oxygen bridges. By combining the results of electron paramagnetic resonance (EPR) spin-trapping, operando attenuated total reflection (ATR) IR spectroscopy and control experiments, it was found that the formation of formamides might involve a HCOOH-like intermediate and .NHPh radicals, in which the selective formation of .OOH radicals might play a key role.
Germyliumylidene: A Versatile Low Valent Group 14 Catalyst
Sarkar, Debotra,Dutta, Sayan,Weetman, Catherine,Schubert, Emeric,Koley, Debasis,Inoue, Shigeyoshi
supporting information, p. 13072 - 13078 (2021/08/09)
Bis-NHC stabilized germyliumylidenes [RGe(NHC)2]+ are typically Lewis basic (LB) in nature, owing to their lone pair and coordination of two NHCs to the vacant p-orbitals of the germanium center. However, they can also show Lewis acidity (LA) via Ge?CNHC σ* orbital. Utilizing this unique electronic feature, we report the first example of bis-NHC-stabilized germyliumylidene [MesTerGe(NHC)2]Cl (1), (MesTer=2,6-(2,4,6-Me3C6H2)2C6H3; NHC= IMe4=1,3,4,5-tetramethylimidazol-2-ylidene) catalyzed reduction of CO2 with amines and arylsilane, which proceeds via its Lewis basic nature. In contrast, the Lewis acid nature of 1 is utilized in the catalyzed hydroboration and cyanosilylation of carbonyls, thus highlighting the versatile ambiphilic nature of bis-NHC stabilized germyliumylidenes.
Study on the mild, rapid and selective difluorocarbene-mediated triclassification of iododifluoroacetophenone with secondary amines and tree model for product classification
Chen, Xiu-Ping,Han, Jie,Hu, Yin-Jie,Li, Yun-Fang,Wang, Xiang-Cong,Ran, Jian-Xiong,Wang, Zhong-Hua,Wu, Fan-Hong
, (2020/12/14)
Difluorocarbene is a very active and widely used intermediate in organic synthesis. In this work, a room temperature difluorocarbene-mediated triclassification reaction of iododifluoroacetophenone (2) and secondary amines with mild condition, short reaction time (only 10 min) and high selectivity had been studied, which produced one of the following three substances: N-CF2H derivatives (up to 87% yield), formamides (82–89% yield) or the recycled starting secondary amines. This phenomenon was related to the structural stability of the corresponding products. If unstable, it would be hydrolyzed to formamides first, and then further hydrolyzed to starting amines. Based on the geometric structure of the raw materials, the corresponding prediction tree model was established, which provided guidance for the further application of difluoromethylation of Vemurafenib (1ee) and AZD9291 (1ff).