496-15-1Relevant articles and documents
CO2-tuned highly selective reduction of formamides to the corresponding methylamines
Chao, Jianbin,Guo, Zhiqiang,Pang, Tengfei,Wei, Xuehong,Xi, Chanjuan,Yan, Leilei
supporting information, p. 7534 - 7538 (2021/10/12)
We herein describe an efficient, CO2-tuned and highly selective C-O bond cleavage of N-methylated formanilides. With easy-to-handle and commercially available NaBH4 as the reductant, a variety of formanilides could be turned into the desired tertiary amines in moderate to excellent yields. The role of CO2 has been investigated in detail, and the mechanism is proposed on the basis of experiments.
Zirconium-hydride-catalyzed site-selective hydroboration of amides for the synthesis of amines: Mechanism, scope, and application
Han, Bo,Jiao, Haijun,Wu, Lipeng,Zhang, Jiong
, p. 2059 - 2067 (2021/09/02)
Developing mild and efficient catalytic methods for the selective synthesis of amines is a longstanding research objective. In this respect, catalytic deoxygenative amide reduction has proven to be promising but challenging, as this approach necessitates selective C–O bond cleavage. Herein, we report the selective hydroboration of primary, secondary, and tertiary amides at room temperature catalyzed by an earth-abundant-metal catalyst, Zr-H, for accessing diverse amines. Various readily reducible functional groups, such as esters, alkynes, and alkenes, were well tolerated. Furthermore, the methodology was extended to the synthesis of bio- and drug-derived amines. Detailed mechanistic studies revealed a reaction pathway entailing aldehyde and amido complex formation via an unusual C–N bond cleavage-reformation process, followed by C–O bond cleavage.
Discovery of tetrahydroquinolines and benzomorpholines as novel potent RORγt agonists
Xia, Yuehan,Yu, Mingcheng,Zhao, Yunpeng,Xia, Li,Huang, Yafei,Sun, Nannan,Song, Meiqi,Guo, Huimin,Zhang, Yunyi,Zhu, Di,Xie, Qiong,Wang, Yonghui
, (2020/12/04)
The retinoic acid receptor-related orphan receptor γt (RORγt) is an important nuclear receptor that regulates the differentiation of Th17 cells and production of interleukin 17(IL-17). RORγt agonists increase basal activity of RORγt and could provide a potential approach to cancer immunotherapy. Herein, hit compound 1 was identified as a weak RORγt agonist during in-house library screening. Changes in LHS core of 1 led to the identification of tetrahydroquinoline compound 6 as a partial RORγt agonist (max. act. = 39.3%). Detailed structure-activity relationship on substituent of the LHS core, amide linker and RHS arylsulfonyl moiety was explored and a novel series of tetrahydroquinolines and benzomorpholines was discovered as potent RORγt agonists. Tetrahydroquinoline compound 8g (EC50 = 8.9 ± 0.4 nM, max. act. = 104.5%) and benzomorpholine compound 9g (EC50 = 7.5 ± 0.6 nM, max. act. = 105.8%) were representative compounds with high RORγt agonistic activity in dual FRET assay, and they showed good activity in cell-based Gal4 reporter gene assay and Th17 cell differentiation assay (104.5% activation at 300 nM of 8g; 59.4% activation at 300 nM of 9g). The binding modes of 8g and 9g as well as the two RORγt inverse agonists accidentally discovered were also discussed.
Pd/C-Catalyzed transfer hydrogenation ofN-H indoles with trifluoroethanol and tetrahydroxydiboron as the hydrogen source
Zhou, Xiao-Yu,Chen, Xia
supporting information, p. 548 - 551 (2021/02/06)
Under the guidance of the known mechanism of the hydrogenation of indoles and transfer hydrogenation with tetrahydroxydiboron (B2(OH)4), Pd/C catalyzed transfer hydrogenation ofN-H indoles with trifluoroethanol and tetrahydroxydiborane as the hydrogen source has been developed. This provides an efficient strategy and catalytic system for the reduction of un-activatedN-H indoles, andN-H indolines are obtained with good to excellent yields. In addition, a series of the isotopic labelling experiments were carried out to probe the mechanism.
Concerning the preparation of 6-bromotryptamine
Scott Wiens,Johnson, Jerry L.,Gribble, Gordon W.
, (2021/03/15)
Most of the previous syntheses of the marine natural product 6-bromotryptamine have almost certainly led to partial debromination resulting in an impure product containing tryptamine. We show that loss of bromine occurs when lithium aluminum hydride is employed as a reducing agent in the final reaction step leading to 6-bromotryptamine. Reductive-debromination is also likely to intrude during some of the syntheses of 6-bromoindole, the typical precursor to 6-bromotryptamine. None of the seven described syntheses of 6-bromotryptamine that involve a reduction sequence from 6-bromoindole have reported elemental analyses as a measure of purity.
Organometallic Synthesis of Bimetallic Cobalt-Rhodium Nanoparticles in Supported Ionic Liquid Phases (CoxRh100?x@SILP) as Catalysts for the Selective Hydrogenation of Multifunctional Aromatic Substrates
Rengshausen, Simon,Van Stappen, Casey,Levin, Natalia,Tricard, Simon,Luska, Kylie L.,DeBeer, Serena,Chaudret, Bruno,Bordet, Alexis,Leitner, Walter
, (2020/12/22)
The synthesis, characterization, and catalytic properties of bimetallic cobalt-rhodium nanoparticles of defined Co:Rh ratios immobilized in an imidazolium-based supported ionic liquid phase (CoxRh100?x@SILP) are described. Following an organometallic approach, precise control of the Co:Rh ratios is accomplished. Electron microscopy and X-ray absorption spectroscopy confirm the formation of small, well-dispersed, and homogeneously alloyed zero-valent bimetallic nanoparticles in all investigated materials. Benzylideneacetone and various bicyclic heteroaromatics are used as chemical probes to investigate the hydrogenation performances of the CoxRh100?x@SILP materials. The Co:Rh ratio of the nanoparticles is found to have a critical influence on observed activity and selectivity, with clear synergistic effects arising from the combination of the noble metal and its 3d congener. In particular, the ability of CoxRh100?x@SILP catalysts to hydrogenate 6-membered aromatic rings is found to experience a remarkable sharp switch in a narrow composition range between Co25Rh75 (full ring hydrogenation) and Co30Rh70 (no ring hydrogenation).
Heterogeneous Hydrogenation of Quinoline Derivatives Effected by a Granular Cobalt Catalyst
Timelthaler, Daniel,Topf, Christoph
, (2021/11/22)
We communicate a convenient method for the pressure hydrogenation of quinolines in aqueous solution by using a particulate cobalt-based catalyst that is prepared in situ from simple Co(OAc)2 4H2O through reduction with abundant zinc powder. This catalytic protocol permits a brisk and atom-efficient access to a variety of 1,2,3,4-tetrahydroquinolines thereby relying solely on easy-to-handle reagents that are all readily obtained from commercial sources. Both the reaction setup assembly and the autoclave charging procedure are conducted on the bench outside an inert-gas-operated containment system, thus rendering the overall synthesis time-saving and operationally very simple.
Palladium-Catalyzed Direct and Specific C-7 Acylation of Indolines with 1,2-Diketones
Xie, Guilin,Zhao, Yuhan,Cai, Changqun,Deng, Guo-Jun,Gong, Hang
supporting information, p. 410 - 415 (2021/01/26)
The indole scaffold is a ubiquitous and useful substructure, and extensive investigations have been conducted to construct the indole framework and/or realize indole modification. Nevertheless, the direct selective functionalization on the benzenoid core must overcome the high activity of the C-3 position and still remains highly challenging. Herein, a palladium-catalyzed direct and specific C-7 acylation of indolines in the presence of an easily removed directing group was developed. This strategy usually is considered as a practical strategy for the preparation of acylated indoles because indoline can be easily converted to indole under oxidation conditions. In particular, our strategy greatly improved the alkacylation yield of indolines for which only an unsatisfactory yield could be achieved in the previous studies. Furthermore, the reaction can be scaled up to gram level in the standard reaction conditions with a much lower palladium loading (1 mol %).
Stereospecific N-acylation of indoles and corresponding microwave mediated synthesis of pyrazinoindoles using hexafluoroisopropanol
Singh, Aarushi,Singh, Snigdha,Sewariya, Shubham,Singh, Nidhi,Singh, Prashant,Kumar, Ajay,Bandichhor, Rakeshwar,Chandra, Ramesh
, (2021/02/27)
We envisioned a facile construction of diversified pyrazinoindoles by using 1,1,1,3,3,3-Hexafluoroisopropanol (HFIP) as the solvent and catalyst, hence eliminating metal catalyzed routes for its development. The process is facilitated by HFIP that has emerged as a powerful tool for development of novel fused heterocycles. This cascade approach blends the asymmetric N-acylation with consecutive intramolecular cyclisation via Pictet-Spengler reaction as an efficient tool forming overall two stereogenic centers. Our approach deals with incorporation of L-amino acid on substituted indoles to provide the chiral N-acylated indole precursor followed by cyclisation to access pyrazinoindole derivatives in high enantiomeric excess up to >99% in good to excellent yields, which have great potential as molecular scaffolds in drug discovery. We have also described the mechanistic course of the reaction based on density functional theory.
Covalent Organic Frameworks toward Diverse Photocatalytic Aerobic Oxidations
Liu, Shuyang,Tian, Miao,Bu, Xiubin,Tian, Hua,Yang, Xiaobo
supporting information, p. 7738 - 7744 (2021/05/07)
Photoactive two-dimensional covalent organic frameworks (2D-COFs) have become promising heterogenous photocatalysts in visible-light-driven organic transformations. Herein, a visible-light-driven selective aerobic oxidation of various small organic molecules by using 2D-COFs as the photocatalyst was developed. In this protocol, due to the remarkable photocatalytic capability of hydrazone-based 2D-COF-1 on molecular oxygen activation, a wide range of amides, quinolones, heterocyclic compounds, and sulfoxides were obtained with high efficiency and excellent functional group tolerance under very mild reaction conditions. Furthermore, benefiting from the inherent advantage of heterogenous photocatalysis, prominent sustainability and easy photocatalyst recyclability, a drug molecule (modafinil) and an oxidized mustard gas simulant (2-chloroethyl ethyl sulfoxide) were selectively and easily obtained in scale-up reactions. Mechanistic investigations were conducted using radical quenching experiments and in situ ESR spectroscopy, all corroborating the proposed role of 2D-COF-1 in photocatalytic cycle.