56-84-8Relevant articles and documents
Recreating the natural evolutionary trend in key microdomains provides an effective strategy for engineering of a thermomicrobial N-demethylase
Gu, Zhenghua,Guo, Zitao,Shao, Jun,Shen, Chen,Shi, Yi,Tang, Mengwei,Xin, Yu,Zhang, Liang
, (2022/03/09)
N-demethylases have been reported to remove the methyl groups on primary or secondary amines, which could further affect the properties and functions of biomacromolecules or chemical compounds; however, the substrate scope and the robustness of N-demethylases have not been systematically investigated. Here we report the recreation of natural evolution in key microdomains of the Thermomicrobium roseum sarcosine oxidase (TrSOX), an N-demethylase with marked stability (melting temperature over 100 C) and enantioselectivity, for enhanced substrate scope and catalytic efficiency on -C-N-bonds. We obtained the structure of TrSOX by crystallization and X-ray diffraction (XRD) for the initial framework. The natural evolution in the nonconserved residues of key microdomains—including the catalytic loop, coenzyme pocket, substrate pocket, and entrance site—was then identified using ancestral sequence reconstruction (ASR), and the substitutions that accrued during natural evolution were recreated by site-directed mutagenesis. The single and double substitution variants catalyzed the N-demethylation of N-methyl-L-amino acids up to 1800- and 6000-fold faster than the wild type, respectively. Additionally, these single substitution variants catalyzed the terminal N-demethylation of non-amino-acid compounds and the oxidation of the main chain -C-N- bond to a -C=N- bond in the nitrogen-containing heterocycle. Notably, these variants retained the enantioselectivity and stability of the initial framework. We conclude that the variants of TrSOX are of great potential use in N-methyl enantiomer resolution, main-chain Schiff base synthesis, and alkaloid modification or degradation.
Structures and antitumor activities of ten new and twenty known surfactins from the deep-sea bacterium Limimaricola sp. SCSIO 53532
Chen, Min,Chen, Rouwen,Ding, Wenping,Li, Yanqun,Tian, Xinpeng,Yin, Hao,Zhang, Si
, (2022/01/11)
Surfactins are natural biosurfactants with myriad potential applications in the areas of healthcare and environment. However, surfactins were almost exclusively produced by the bacterium Bacillus species in previous reported literatures, together with difficulty in isolating pure monomer, which resulted in making extensive effort to remove duplication and little discovery of new surfactins in recent years. In the present study, the result of Molecular Networking indicated that Limimaricola sp. SCSIO 53532 might well be a potential resource for surfacin-like compounds based on OSMAC strategy. To search for new surfactins with significant biological activity, further study was undertaken on the strain. As a result, ten new surfactins (1–10), along with twenty known surfactins (11–30), were isolated from the ethyl acetate extract of SCSIO 53532. Their chemical structures were established by detailed 1D and 2D NMR spectroscopy, HRESIMS data, secondary ion mass spectrometry (MS/MS) analysis, and chemical degradation (Marfey's method) analysis. Cytotoxic activities of twenty-seven compounds against five human tumor cell lines were tested, and five compounds showed significant antitumor activities with IC50 values less than 10 μM. Furtherly, analysis of structure–activity relationships revealed that the branch of side chain, the esterification of Glu or Asp residue, and the amino acid residue of position 7 possessed a great influence on antitumor activity.
Biosynthesis ofl-alanine fromcis-butenedioic anhydride catalyzed by a triple-enzyme cascadeviaa genetically modified strain
Cui, Ruizhi,Liu, Zhongmei,Yu, Puyi,Zhou, Li,Zhou, Zhemin
, p. 7290 - 7298 (2021/09/28)
In industry,l-alanine is biosynthesized using fermentation methods or catalyzed froml-aspartic acid by aspartate β-decarboxylase (ASD). In this study, a triple-enzyme system was developed to biosynthesizel-alanine fromcis-butenedioic anhydride, which was cost-efficient and could overcome the shortcomings of fermentation. Maleic acid formed bycis-butenedioic anhydride dissolving in water was transformed tol-alanineviafumaric acid andl-asparagic acid catalyzed by maleate isomerase (MaiA), aspartase (AspA) and ASD, respectively. The enzymatic properties of ASD from different origins were investigated and compared, as ASD was the key enzyme of the triple-enzyme cascade. Based on cofactor dependence and cooperation with the other two enzymes, a suitable ASD was chosen. Two of the three enzymes, MaiA and ASD, were recombinant enzymes cloned into a dual-promoter plasmid for overexpression; another enzyme, AspA, was the genomic enzyme of the host cell, in which AspA was enhanced by a T7promoter. Two fumarases in the host cell genome were deleted to improve the utilization of the intermediate fumaric acid. The conversion of whole-cell catalysis achieved 94.9% in 6 h, and the productivity given in our system was 28.2 g (L h)?1, which was higher than the productivity that had been reported. A catalysis-extraction circulation process for the synthesis ofl-alanine was established based on high-density fermentation, and the wastewater generated by this process was less than 34% of that by the fermentation process. Our results not only established a new green manufacturing process forl-alanine production fromcis-butenedioic anhydride but also provided a promising strategy that could consider both catalytic ability and cell growth burden for multi-enzyme cascade catalysis.
Leveraging Peptaibol Biosynthetic Promiscuity for Next-Generation Antiplasmodial Therapeutics
Lee, Jin Woo,Collins, Jennifer E.,Wendt, Karen L.,Chakrabarti, Debopam,Cichewicz, Robert H.
supporting information, p. 503 - 517 (2021/03/01)
Malaria remains a worldwide threat, afflicting over 200 million people each year. The emergence of drug resistance against existing therapeutics threatens to destabilize global efforts aimed at controlling Plasmodium spp. parasites, which is expected to leave vast portions of humanity unprotected against the disease. To address this need, systematic testing of a fungal natural product extract library assembled through the University of Oklahoma Citizen Science Soil Collection Program has generated an initial set of bioactive extracts that exhibit potent antiplasmodial activity (EC50 25 μM, selectivity index > 250). The unique chemodiversity afforded by these fungal isolates serves to unlock new opportunities for translating peptaibols into a bioactive scaffold worthy of further development.
Noncovalently Functionalized Commodity Polymers as Tailor-Made Additives for Stereoselective Crystallization
Wan, Xinhua,Wang, Zhaoxu,Ye, Xichong,Zhang, Jie
supporting information, p. 20243 - 20248 (2021/08/09)
Stereoselective inhibition of the nucleation and crystal growth of one enantiomer aided by “tailor-made” polymeric additives is an efficient method to obtain enantiopure compounds. However, the conventional preparation of polymeric additives from chiral monomers are laborious and limited in structures, which impedes their rapid optimization and applicability. Herein, we report a “plug-and-play” strategy to facilitate synthesis by using commercially available achiral polymers as the platform to attach various chiral small molecules as the recognition side-chains through non-covalent interactions. A library of supramolecular polymers made up of two vinyl polymers and six small molecules were applied with seeds in the selective crystallization of seven racemates in different solvents. They showed good to excellent stereoselectivity in yielding crystals with high enantiomeric purities in conglomerates and racemic compound forming systems. This convenient, low-cost modular synthesis strategy of polymeric additives will allow for high-efficient, economical resolution of various racemates on different scales.
A plug-and-play chemobiocatalytic route for the one-pot controllable synthesis of biobased C4 chemicals from furfural
Huang, Yi-Min,Lu, Guang-Hui,Zong, Min-Hua,Cui, Wen-Jing,Li, Ning
supporting information, p. 8604 - 8610 (2021/11/16)
Chemobiocatalytic selective transformation is an attractive yet challenging task, due to the incompatibility issues between different types of catalysts. In this work, one-pot, multi-step cascades integrating biocatalysis with organo-, base- and photocatalysis in a plug-and-play fashion were constructed for the controllable synthesis of eight C4 chemicals from furfural. Furfural was converted to 5-hydroxy-2(5H)-furanone (HFO) by sequential biocatalytic oxidation and photooxygenation in phosphate buffer, in >90% yields. Ring opening and concurrent isomerization of HFO to fumaric semialdehyde (FSA) were readily realized under mild conditions by a weakly basic resin (e.g., DVB resin). The versatile intermediate FSA could be oxidized to fumaric acid (FA) using a laccase-2,2,6,6-tetramethylpiperidinyl-1-oxy (TEMPO) system, which was further upgraded to amino acids including l-aspartic acid (l-Asp) and β-alanine (β-Ala) by whole-cell catalysis. Notably, amino acids were obtained from biobased furfural in a one-pot, four-step process with yields of up to 75%, without the isolation of any intermediates. Besides, the scale-up synthesis of l-Asp was demonstrated. This work demonstrates the great potential of the combination of chemo- and biocatalysis for selective furfural valorization.
Stalobacin: Discovery of Novel Lipopeptide Antibiotics with Potent Antibacterial Activity against Multidrug-Resistant Bacteria
Matsui, Kouhei,Matsui, Kouhei,Kan, Yukiko,Kikuchi, Junko,Matsushima, Keisuke,Takemura, Miki,Maki, Hideki,Kozono, Iori,Ueda, Taichi,Minagawa, Kazuyuki
supporting information, p. 6090 - 6095 (2020/07/10)
A novel lipopeptide antibiotic, stalobacin I (1), was discovered from a culture broth of an unidentified Gram-negative bacterium. Stalobacin I (1) had a unique chemical architecture composed of an upper and a lower half peptide sequence, which were linked via a hemiaminal methylene moiety. The sequence of 1 contained an unusual amino acid, carnosadine, 3,4-dihydroxyariginine, 3-hydroxyisoleucine, and 3-hydroxyaspartic acid, and a novel cyclopropyl fatty acid. The antibacterial activity of 1 against a broad range of drug-resistant Gram-positive bacteria was much stronger than those of last resort antibiotics such as vancomycin, linezolid, and telavancin (MIC 0.004-0.016 μg/mL). Furthermore, compound 1 induced a characteristic morphological change in Gram-positive and Gram-negative strains by inflating the bacterial cell body. The absolute configuration of a cyclopropyl amino acid, carnosadine, was determined by the synthetic study of its stereoisomers, which was an essential component for the strong activity of 1.
Preparation and characterization of a new open-tubular capillary column for enantioseparation by capillary electrochromatography
Li, Yingjie,Tang, Yimin,Qin, Shili,Li, Xue,Dai, Qiang,Gao, Lidi
, p. 283 - 292 (2019/02/05)
In order to use the enantioseparation capability of cationic cyclodextrin and to combine the advantages of capillary electrochromatography (CEC) with open-tubular (OT) column, in this study, a new OT-CEC, coated with cationic cyclodextrin (1-allylimidazolium-β-cyclodextrin [AI-β-CD]) as chiral stationary phase (CSP), was prepared and applied for enantioseparation. Synthesized AI-β-CD was characterized by infrared (IR) spectrometry and mass spectrometry (MS). The preparation conditions for the AI-β-CD-coated column were optimized with the orthogonal experiment design L9(34). The column prepared was characterized by scanning electron microscopy (SEM) and elemental analysis (EA). The results showed that the thickness of stationary phase in the inner surface of the AI-β-CD-coated columns was about 0.2 to 0.5?μm. The AI-β-CD content in stationary phase based on the EA was approximately 2.77?mmol·m?2. The AI-β-CD-coated columns could separate all 14 chiral compounds (histidine, lysine, arginine, glutamate, aspartic acid, cysteine, serine, valine, isoleucine, phenylalanine, salbutamol, atenolol, ibuprofen, and napropamide) successfully in the study and exhibit excellent reproducibility and stability. We propose that the column, coated with AI-β-CD, has a great potential for enantioseparation in OT-CEC.
Induction of cryptic metabolites of the endophytic fungus: Trichocladium sp. through OSMAC and co-cultivation
Tran-Cong, Nam Michael,Mándi, Attila,Kurtán, Tibor,Müller, Werner E.G.,Kalscheuer, Rainer,Lin, Wenhan,Liu, Zhen,Proksch, Peter
, p. 27279 - 27288 (2019/09/12)
The endophytic fungus Trichocladium sp. isolated from roots of Houttuynia cordata was cultured on solid rice medium, yielding a new amidepsine derivative (1) and a new reduced spiro azaphilone derivative (3) together with eight known compounds (4-11). Co-cultivation of Trichocladium sp. with Bacillus subtilis resulted in induction of a further new compound (2) and a 10-fold increase of 11 compared to the axenic fungal culture. Moreover, when the fungus was cultivated on peas instead of rice, a new sesquiterpene derivative (13) and two known compounds (12 and 14) were obtained. Addition of 2% tryptophan to rice medium led to the isolation of a new bismacrolactone (15). The structures of the new compounds were elucidated by HRESIMS, 1D and 2D NMR as well as by comparison with the literature. A combination of TDDFT-ECD, TDDFT-SOR, DFT-VCD and DFT-NMR calculations were applied to determine the absolute and relative configurations of 13 and 15. Compounds 7, 11 and 15 exhibited strong cytotoxicity against the L5178Y mouse lymphoma cell line with IC50 values of 0.3, 0.5 and 0.2 μM, respectively.
Covalent Organic Frameworks with Chirality Enriched by Biomolecules for Efficient Chiral Separation
Zhang, Sainan,Zheng, Yunlong,An, Hongde,Aguila, Briana,Yang, Cheng-Xiong,Dong, Yueyue,Xie, Wei,Cheng, Peng,Zhang, Zhenjie,Chen, Yao,Ma, Shengqian
supporting information, p. 16754 - 16759 (2018/11/27)
The separation of racemic compounds is important in many fields, such as pharmacology and biology. Taking advantage of the intrinsically strong chiral environment and specific interactions featured by biomolecules, here we contribute a general strategy is developed to enrich chirality into covalent organic frameworks (COFs) by covalently immobilizing a series of biomolecules (amino acids, peptides, enzymes) into achiral COFs. Inheriting the strong chirality and specific interactions from the immobilized biomolecules, the afforded biomolecules?COFs serve as versatile and highly efficient chiral stationary phases towards various racemates in both normal and reverse phase of high-performance liquid chromatography (HPLC). The different interactions between enzyme secondary structure and racemates were revealed by surface-enhanced Raman scattering studies, accounting for the observed chiral separation capacity of enzymes?COFs.