Welcome to LookChem.com Sign In|Join Free

CAS

  • or

7803-51-2

Post Buying Request

7803-51-2 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

7803-51-2 Usage

Chemical Description

Phosphine is a colorless gas with a pungent odor that is used in the semiconductor industry.

Description

Phosphine is a colorless, flammable gas that is heavier than air and has a characteristic odor described as being similar to decaying fish. Pure phosphine is claimed to be odorless, even at a level of 200 ppm. The odor threshold for commercially available phosphine ranges from 0.02 ppm to 3 ppm. It has an autoignition temperature of 100°F (37.8°C) and ignites spontaneously when traces of other phosphorous hydrides such as diphosphine are present. For all practical purposes, phosphine should be handled both as a pyrophoric and highly toxic gas. Phosphine is stable at room temperature and begins to decompose at about 707°F (375°C), with complete decomposition at about 1100°F (593°C). Phosphine is readily oxidized by common oxidizers such as potassium permanganate and sodium hypochlorite. Unlike arsine, it will have some reaction with the alkalis. Phosphine is a strong reducing agent and can precipitate a number of heavy metals from solutions of their salts. It will react violently with oxidizers such as oxygen, chlorine, fluorine, and nitric oxide. Phosphine is shipped in the pure form as a liquefied gas, and is also commonly available as a mixture when blended with hydrogen or inert gases.

Chemical Properties

Different sources of media describe the Chemical Properties of 7803-51-2 differently. You can refer to the following data:
1. Phosphine is a pyrophoric chemical and spontaneously flammable in air. It is incompatible with strong oxidising agents, halogens, nitric acid. It has the odour of garlic or decaying fish. It is slightly soluble in water. It is flammable and is an explosive gas at ambient temperature. Phosphine decomposes on heating or on burning producing toxic fumes including phosphorus oxides. It reacts violently with air, oxygen, oxidants such as chlorine and nitrogen oxides, metal nitrates, halogens, and other toxic substances, and causes fire and explosion hazard.
2. Phosphine is a colorless gas that is shipped as liquefied compressed gas. Odorless when pure. It has the odor of garlic or the foul odor of decaying fish. The level at which humans detect the odor of phosphine (odor threshold) does not provide sufficient warning of dangerous concentrations. Phosphine presents an additional hazard in that it ignites at very low temperatures. Shipped as a liquefied compressed gas. The pure compound is odorless. The Odor Threshold is 0.14 ppm.

Physical properties

Colorless gas with an odor of decaying fish; flammable; burns with a luminous flame; density 1.492 g/L; liquefies at -87.7°C; solidifies at -133°C; critical temperature 51.35°C; critical pressure 64.55 atm; slightly soluble in water; the solution is weakly basic.

Occurrence

Phosphine is produced naturally in small amounts in marshy lands, especially in damp graveyards, resulting from bacterial decay of animal and vegetable matter containing phosphorus. The atmospheric oxidation of impure phosphine (containing trace amounts of diphosphine, P2H4) emits pale flickering lights, the so-called “Will o’ the wisps” or “corpse candles” seen on dark nights. The compound has very little commercial application. It is used to prepare phosphonium salts, which also can be made by other processes.

Uses

Different sources of media describe the Uses of 7803-51-2 differently. You can refer to the following data:
1. Phosphine is used in a variety of organic preparations and in the preparation of phosphonium halides. It is commonly used (in gas mixtures) as a doping agent for n-type semiconductors, and as a pure gas in the manufacture of light-emitting diodes. It is also used as a fumigant at low concentrations for grain.
2. Phosphine is used as a fumigant, in the synthesis of many organophosphorus compounds, and as a doping agent for electronic components. It occurs in the waste gases from plants manufacturing semiconductors and thin-film photovoltaic cells. The presence of bound residues of phosphine in fumigated commodities has been reported (Rangaswamy and Sasikala 1986).
3. Phosphine is the most widely used fumigant for insect con-trol in the durable commodities throughout the world. It is increasingly used as a treatment to re-place methyl bromide especially because of its low cost, fast dispersion in the air and low residues. Versatility of use is a major advantage for phosphine, as it can be used in a variety of storage buildings, during transit (e.g. in ship holds) or in plastic sheet enclosures. It is close to an ideal fumigant except for few drawbacks: slow activity, the rapid increase in insect resistance, flammability at higher concentrations (>900 ppm) and corrosion of copper, silver and gold. The phosphine resistance among the insect populations was found to be the result of selection pressure caused by inadequate fumigations in the storage units; storage facilities not adequately sealed before fumigation; and fumigant concentrations not being monitored. The understanding of phosphine resistance mechanism, improved monitoring tactics and management of resistance are the priorities in tackling the problem (Rajendran, 2001). The other problems like corrosion and flammability were found to be limited by using the combination of heat (30–36℃), carbon dioxide (3–7%) and phosphine at 80–100 ppm, while achieving a complete insect control.

Definition

Different sources of media describe the Definition of 7803-51-2 differently. You can refer to the following data:
1. A colorless gas that is slightly soluble in water. It has a characteristic fishy smell. It can be made by reacting water and calcium phosphide or by the action of yellow phosphorus on a concentrated alkali. Phosphine usually ignites spontaneously in air because of contamination with diphosphine. It decomposes into its elements if heated to 450°C in the absence of oxygen and it burns in oxygen or air to yield phosphorus oxides. It reacts with solutions of metal salts to precipitate phosphides. Like its nitrogen analog ammonia it forms salts, called phosphonium salts. It also forms complex addition compounds with metal ions. As in ammonia, one or more of the hydrogen atoms can be replaced by alkyl groups.
2. phosphine: A colourless highlytoxic gas, PH3; m.p.-133°C; b.p.–87.7°C; slightly soluble in water.Phosphine may be prepared by reactingwater or dilute acids with calciumphosphide or by reactionbetween yellow phosphorus and concentratedalkali. Solutions of phosphineare neutral but phosphinedoes react with some acids to givephosphonium salts containing PH4+ions, analogous to the ammoniumions. Phosphine prepared in the laboratoryis usually contaminated withdiphosphine and is spontaneouslyflammable but the pure compound isnot so. Phosphine can function as aligand in binding to transition-metalions. Dilute gas mixtures of very purephosphine and the rare gases areused for doping semiconductors.
3. ChEBI: The simplest phosphine, consisting of a single phosphorus atom with three hydrogens attached.

Production Methods

Phosphine, also known as phosphorated hydrogen or hydrogen phosphide (PH3), has no direct commercial use. However, it may be generated from aluminum or zinc phosphide and water for grain fumigation. It may be present in phosphorus as a polymer or generated at low rates under alkaline conditions and at a temperature of 85C. The generation of acetylene from calcium carbide containing calcium phosphide as an impurity and metal processing procedures in which phosphides are formed are the most frequent sources of industrial hygiene problems with phosphine.

Preparation

Phosphine, unlike ammonia, is not made by direct union of elements. However, phosphine is prepared from other phosphorus compounds by several methods. Phosphine can be prepared by alkaline hydrolysis of white phosphorus. Thus, a strong aqueous solution of caustic potash when boiled with white phosphorus yields hypophosphite with liberation of phosphine: P4 + 3KOH + 3H2O → 3KH2PO2 + PH3↑ Caustic soda or barium hydroxide can be used instead of caustic potash. The apparatus should be free from air. Either hydrogen or natural gas may be passed through the generator to purge out all residual oxygen out from the flask to prevent any explosion. A small amount of diphosphine, P2H4 also is produced in the reaction. The latter inflames spontaneously in air. Diphosphine, which is an unstable liquid at 20°C, may be removed by condensation in a tube immersed in a freezing mixture; or by passing through concentrated hydrochloric acid; or slowly by photochemical decomposition by exposing to light. Phosphine also is prepared by reduction of a solution of phosphorus trichloride with lithium aluminum hydride in dry ether under warm conditions. The solution of the latter is added from a dropping funnel to phosphorus trichloride solution in dry ether placed in a water bath. 4 PCl3 + 3LiAlH4 → 3 LiCl + 3AlCl3 + 4PH3↑ The flask is connected to a reflux condenser to condense down solvent ether back into the flask. Phosphine is collected over water as a moist gas. Dry phosphine may alternatively be condensed in a U-tube placed in freezing mixture. Phosphine may be produced by mixing a solution of phosphonium iodide with potassium hydroxide: PH4I + KOH → KI + H2O + PH3↑ Another preparation method involves treating metallic phosphide with dilute acids: Ca3P2 + 6HCl → 3CaCl2 + 2PH3↑ This method was applied earlier to produce floating signal flares at sea. Floating cans of calcium phosphide were punctuated to admit sea water to generate phosphine, which ignited spontaneously to emit flares. The flares could not be extinguished by wind or water.

Air & Water Reactions

Highly flammable. Usually ignites spontaneously in air. Burns with a luminous flame [Merck 11th ed. 1989]. Insoluble in water.

Reactivity Profile

Phosphine is a reducing agent. Ignites spontaneously in air when pure [Sidgwick, 1950, p. 729]. Liquefied Phosphine can be detonated [Rust, 1948, p. 301]. Ignites or reacts violently with boron trichloride, dichlorine oxide, halogens (bromine, chlorine, iodine), metal nitrates, nitrogen oxides, nitric acid, nitrous acid, nitrogen trichloride [Bretherick, 5th ed., 1995, p. 1562]. Forms explosive mixtures with even small amounts of oxygen. Autoignites at low pressures [Fisher, E. O. et al., Angew. Chem., 1968, 7, p. 136].

Hazard

Phosphine is a highly toxic and flammable gas. Acute effects are irritation, tightness of chest, painful breathing, and lung damage. High concentration can be fatal. A fire hazard.

Health Hazard

Different sources of media describe the Health Hazard of 7803-51-2 differently. You can refer to the following data:
1. Phosphine is a super- toxic gas with a probable oral lethal dose of 5 mg/kg or 7 drops for a 150 pound person. An air concentration of 3 ppm is safe for long term exposure, 500 ppm is lethal in 30 minutes, and a concentration of 1,000 ppm is lethal after a few breaths.
2. Phosphine is a highly poisonous gas. The symptoms of its acute toxic effectsin humans can be respiratory passage irritation, cough, tightness of chest, painful breathing, a feeling of coldness, and stupor. Inhalation of high concentrations of phosphine in air can cause lung damage, convulsion, coma, and death. In addition to damaging the respiratory system, exposure to this compound can cause nausea, vomiting, diarrhea, and depression of the central nervous system. Exposure to a concentration of 1000 ppm in air for 5 minutes can be fatal to humans (NIOSH 1986). LC50 value, inhalation (rats): 11 ppm (15.3 mg/m3)/4 hChronic exposure is likely to cause phosphorus poisoning. Nutritional and toxicological studies indicated that ingestion of a phosphine-fumigated diet by rats for 2 years did not cause marked modification of growth, feed intake, functional behavior, or the incidence or type of tumors (Cabrol Telle et al. 1985).

Fire Hazard

Phosphine can explode with powerful oxidizers. The gas is heavier than air and may travel along the ground to an ignition source. Container may explode in heat of fire. When heated to decomposition, Phosphine emits highly toxic fumes of phosphorus oxides. Reacts violently with: air; boron trichloride; bromine; chlorine; chlorine monoxide; nitric acid; nitric oxide; nitrous oxide; nitrogen trioxide; silver nitrate; nitrous acid; mercuric nitrate; nitrogen trichloride; oxygen; and (potassium plus ammonia). Stable up to 131F. May become unstable at high temperatures.

Flammability and Explosibility

Highlyflammable

Agricultural Uses

Fumigant, Insecticide: Phosphine gas is used indoors to control a broad spectrum of insects for non-food/non-feed commodities in sealed containers or structures. There are no homeowner or agricultural row crop uses for this product. The end-use product is a poisonous liquefied gas under pressure, and is A U.S. EPA restricted Use Pesticide (RUP) due to the acute inhalation toxicity of phosphine gas. Phosphine is only occasionally used in industry, and exposure usually results accidentally as a byproduct of various processes. Exposures may occur when acid or water comes in contact with metallic phosphides (aluminum phosphide, calcium phosphide). These two phosphides are used as insecticides or rodenticides for grain, and phosphine is generated during grain fumigation. Phosphine may also evolve during the generation of acetylene from impure calcium carbide, as well as during metal shaving, sulfuric acid tank cleaning, rustproofing, and ferrosilicon, phosphoric acid and yellow phosphorus explosive handling. U.S. EPA restricted Use Pesticide (RUP). Currently listed as “pending” in the EU.

Trade name

ECO2 FUME TM?; VAPORPH3OS?

Materials Uses

Phosphine is noncorrosive and, therefore, may be used with most ofthe commercially available metals. However, since phosphine is mainly used for the electronics industry, type 316 and 316L stainless steel is recommended for the gas delivery systems. Stainless steel regulators should be used for all high purity applications with phosphine and phosphine mixtures. In all cases, systems should be adequately designed to withstand the pressures to be encountered.

Safety Profile

A poison by inhalation. A very toxic gas whose effects are not completely understood. The chef effects are central nervous system depression and lung irritation. There may be pulmonary edema, dilation of the heart, and hyperemia of the visceral organs. Inhalation can cause coma and convulsions leading to death within 48 hours. However, most cases recover without after-effects. Chronic poisoning, characterized by anemia, bronchitis, gastrointestinal disturbances, and visual, speech, and motor disturbances, may result from continued exposure to very low concentrations.Very dangerous fire hazard by spontaneous chemical reaction. Moderately explosive when exposed to flame. Explosive reaction with dichlorine oxide, silver nitrate, concentrated nitric acid, nitrogen trichloride, oxygen. Reacts with mercury(Ⅱ) nitrate to form an explosive product. Ignition or violent reaction with air, boron trichloride, Br2, Cl2, aqueous halogen solutions, iodine, metal nitrates, NOx NCh, NO3, N20, HN02, K + NH3, oxidants. The organic derivatives of phosphine (phosphines) react vigorously with halogens. To fight fire, use CO2, dry chemical, or water spray. Dangerous; when heated to decomposition it emits highly toxic fumes of POx. Used as a fumigant, doping agent for electronic components, and in chemical synthesis

Potential Exposure

Phosphine is used as a fumigant; in the semiconductor industry, as a doping agent for electronic components to introduce phosphorus into silicon crystals; in chemical synthesis; used as a polymerization initiator; as an intermediate for some flame retardants. Also, exposures may occur when acid or water comes in contact with metallic phosphides (aluminum phosphide, calcium phosphide). These two phosphides are used as insecticides or rodenticides for grain, and phosphine is generated during grain fumigation. When phosphine toxicity is suspected, but phosphine exposure is not obvious, one should suspect transdermal contamination and/or ingestion of phosphides. Phosphine may also evolve during the generation of acetylene from impure calcium carbide, as well as during metal shaving; sulfuric acid tank cleaning; rustproofing, ferrosilicon, phosphoric acid; and yellow phosphorus explosive handling.

Physiological effects

Phosphine is a highly toxic gas that can cause death from delayed pulmonary edema or from tissue anoxia secondary to interference with tissue respiration. Phosphine is both an irritant and a general systemic poison. Its action is similar to that of hydrogen sulfide. Symptoms of irritation include lacrimation, substernal chest pain and chest tightness, shortness of breath, a slight cough, and cyanosis. Nonlethal exposures can result in symptoms referable to the gastrointestinal tract and the nervous system. Abdominal symptoms include nausea, vomiting, severe epigastric pain, and diarrhea. Neurologic symptoms include vertigo,headache, restlessness, intentional tremor, lack of muscular coordination, double vision, drowsiness, and a decreased sensation in the extremities. Death in humans has occurred after exposures as low as 8 ppm for 1-2 hours. Additional acute toxic symptoms involve cardiac abnormalities, liver dysfunction, and kidney inflammation. Agitated psychotic behavior can occur. ACGIH recommends a Threshold Limit Value-Time-Weighted Average (TLV-TWA) of 0.3 ppm (0.42 mg/m3) for phosphine. The TLV-TWA is the time-weighted average concentration for a normal 8-hour workday and a 40-hour workweek, to which nearly all workers may be repeatedly exposed, day after day, without adverse effect. ACGIH also recommends a Threshold Limit Value-Short Term Exposure Limit (TLV-STEL) of 1 ppm (1.4 mg/m3) for phosphine. The TLV-STEL is the IS-minute TWA exposure that should not be exceeded at any time during a workday even if the 8-hour TWA is within the TLV-TWA. Exposures above the TLV- TWA up to the STEL should not be longer than 15 minutes and should not occur more than 4 times per day. There should be at least 60 minutes between successive exposures in this range. OSHA lists an 8-hour Time-Weighted Average-Permissible Exposure Limit (TWA-PEL) of 0.3 ppm (0.4 mg/m3) for phosphine. TWAPEL is the exposure limit that shall not be exceeded by the 8-hour TWA in any 8-hour work shift of a 40-hour workweek.

Environmental Fate

Because of its very high vapor pressure, phosphine exists in air as a gas and volatilizes from water and surface soil. At high concentrations, the vapors may spontaneously combust in air. Atmospheric phosphine may be degraded by photochemically produced hydroxyl radicals with an expected half-life of less than 1 day. Phosphine can bind to subsurface soils and is degraded quickly. The chemical does not accumulate in the food chain.

storage

Since phosphine is an extremely toxic and flammable gas, appropriate precautions must be taken in its storage and handling. Store and use phosphine and phosphine mixtures only in ventilated gas cabinets, exhaust hoods, or highly ventilated rooms that supply a large volume of forced air ventilation. Explosion-proof forced draft gas cabinets or fume hoods are recommended. Use piping and equipment adequately designed to withstand the pressures to be encountered. Since phosphine may form explosive mixtures with air, keep it away from heat and all ignition sources such as flames and sparks. All lines, connections, equipment, etc. must be thoroughly checked for leaks and grounded prior to use. Only use spark-proof tools and explosion-proof equipment. The compatibility with plastics and elastomers should be confirmed. For basic safety information on the handling of compressed gas cylinders, refer to CGA P-I, Safe Handling of Compressed Gases in Containers.

Shipping

UN2199 Phosphine, Hazard Class: 2.3; Labels: 2.3-Poisonous gas, 2.1-Flammable gas, Inhalation Hazard Zone A. Cylinders must be transported in a secure upright position, in a well -ventilated truck. Protect cylinder and labels from physical damage. The owner of the compressed gas cylinder is the only entity allowed by federal law (49CFR) to transport and refill them. It is a violation of transportation regulations to refill compressed gas cylinders without the express written permission of the owner.

Purification Methods

PH3 is best purified in a gas line (in a vacuum) in an efficient fume cupboard. It is spontaneously flammable, has a strong odour of decayed fish and is POISONOUS. The gas is distilled through solid KOH towers (two), through a Dry ice-acetone trap (-78o, to remove H2O, and P2H4 which spontaneously ignites with O2), then through two liquid N2 traps (-196o), followed by distillation into a -126o trap (Dry ice-methylcyclohexane slush), allowed to warm in the gas line and then sealed in ampoules preferably under N2. IR: max 2327 (m), 1121 (m) and 900 (m) cm-1 . [Klement in Handbook of Preparative Inorganic Chemistry (Ed. Brauer) Academic Press Vol I pp 525-530 1963, Gokhale & Jolly Inorg Synth IX 56 1967.] PH3 has also been absorbed into a solution of cuprous chloride in hydrochloric acid (when CuCl.PH3 is formed). PH3 gas is released when the solution is heated, and the gas is purified by passage through KOH pellets and then over P2O5. Its solubility is 0.26mL/1 mL of H2O at 20o, and a crystalline hydrate is formed on releasing the pressure on an aqueous solution.

Toxicity evaluation

Phosphine toxicity occurs in insects, rodents, and humans via a common mechanism of respiratory inhibition. The chemical is a noncompetitive inhibitor of cytochrome oxidase in mitochondria. Human case reports and animal studies have shown that phosphine also inhibits the activity of catalase and cholinesterase, decreases glutathione content, and reacts with hemoglobin. Overall, the studies show oxidative stress as the mechanism of phosphine toxicity.

Incompatibilities

Phosphine reacts with acids, air, copper, moisture, oxidizers, oxygen, chlorine, nitrogen oxides; metal nitrates; halogens, halogenated hydrocarbons; copper and many other substances, causing fire and explosion hazard. Extremely explosive; may ignite spontaneously on contact with air at (or about) 100C. Attacks many metals. Incompatible with oxidizers (chlorates, nitrates, peroxides, permanganates, perchlorates, chlorine, bromine,fluorine, etc.); contact may cause fires or explosions. Keep away from alkaline materials, strong acids, amines, ammonia, ethylene oxide, metal nitrates, nitrous acid, phosgene, strong bases.

Waste Disposal

Return refillable compressed gas cylinders to supplier. Consult with environmental regulatory agencies for guidance on acceptable disposal practices. Generators of waste containing this contaminant (≥100 kg/mo) must conform with EPA regulations governing storage, transportation, treatment, and waste disposal. In accordance with 40CFR165, follow recommendations for the disposal of pesticides and pesticide containers. Must be disposed properly by following package label directions or by contacting your local or federal environmental control agency, or by contacting your regional EPA office. Controlled discharges of Phosphine may be passed through 10% NAOH solution in a scrubbing tower. The product may be discharged to a sewer.

GRADES AVAILABLE

Phosphine is supplied in a number of grades, primarily as electronic grade, with a purity of 99.999 percent on a hydrogen-free basis.An MOCVD grade is also offered with a purity of 99.9998 percent.

Check Digit Verification of cas no

The CAS Registry Mumber 7803-51-2 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 7,8,0 and 3 respectively; the second part has 2 digits, 5 and 1 respectively.
Calculate Digit Verification of CAS Registry Number 7803-51:
(6*7)+(5*8)+(4*0)+(3*3)+(2*5)+(1*1)=102
102 % 10 = 2
So 7803-51-2 is a valid CAS Registry Number.
InChI:InChI=1/H3P/h1H3

7803-51-2SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 17, 2017

Revision Date: Aug 17, 2017

1.Identification

1.1 GHS Product identifier

Product name phosphane

1.2 Other means of identification

Product number -
Other names hydrogen phosphide

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only. Warfare and Terrorism Agents (used in acts of war or terror)
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:7803-51-2 SDS

7803-51-2Synthetic route

bis(trifluoromethyl)arsane
371-74-4

bis(trifluoromethyl)arsane

(CH3)3SnPH2
31614-58-1

(CH3)3SnPH2

A

phosphan
7803-51-2

phosphan

B

trimethylstannylbis(trifluoromethyl)arsane
39185-14-3

trimethylstannylbis(trifluoromethyl)arsane

Conditions
ConditionsYield
20°C, 6 d;A n/a
B 100%
20°C, 6 d;A n/a
B 100%
bis(trifluoromethyl)arsane
371-74-4

bis(trifluoromethyl)arsane

Trimethylphosphinogerman
20519-92-0

Trimethylphosphinogerman

A

phosphan
7803-51-2

phosphan

B

Trimethylgermanyl-bis-(trifluormethyl)-arsin
39185-12-1

Trimethylgermanyl-bis-(trifluormethyl)-arsin

Conditions
ConditionsYield
20°C, 5 wk;A n/a
B 100%
20°C, 5 wk;A n/a
B 100%
calcium phosphide

calcium phosphide

water
7732-18-5

water

A

diphosphane
12185-09-0

diphosphane

B

phosphan
7803-51-2

phosphan

Conditions
ConditionsYield
In neat (no solvent) byproducts: Ca(OH)2; vac. (20-23 torr, 1.5 h, 0°C; 20°C, 10 torr); condensation (-78°C); (31)P NMR;A 90%
B n/a
phosphorous
12185-10-3

phosphorous

2-methoxy-ethanol
109-86-4

2-methoxy-ethanol

phosphan
7803-51-2

phosphan

Conditions
ConditionsYield
With n-CH3C6H4SO3H In further solvent(s) Electrolysis; CH3OC2H4OH soln., cathode Pb, anode graphite, 20-25 °C, 0.01 A/cm**2, 5-8 V, 2.0 M CH3C6H4SO3H;89.3%
With HCl In further solvent(s) Electrolysis; CH3OC2H4OH soln., cathode Pb, anode graphite, 20-25 °C, 0.01 A/cm**2, 4.3-4.5 V, 2.0 M HCl;54.6%
With HCl In further solvent(s) Electrolysis; CH3OC2H4OH soln., cathode Pb, anode graphite, 20-25 °C, 0.05 A/cm**2, 9-12 V, 2.0 M HCl;45%
phosphorous
12185-10-3

phosphorous

ethanol
64-17-5

ethanol

phosphan
7803-51-2

phosphan

Conditions
ConditionsYield
With n-CH3C6H4SO3H In ethanol Electrolysis; cathode Pb, anode graphite, 20-25 °C, 0.01 A/cm**2, 4.5-6.0 V, 1.7-2 M n-CH3C6H4SO3H;80.7%
With n-CH3C6H4SO3H In ethanol Electrolysis; cathode Pb, anode graphite, 20-25 °C, 0.05 A/cm**2, 12-26 V, 1.7-2 M n-CH3C6H4SO3H;74.4%
With HCl In ethanol Electrolysis; cathode Pb, anode graphite, 20-25 °C, 0.05 A/cm**2, 6.5-6.7 V, 1.7-2 M HCl;60.5%
lithium aluminium tetrahydride
16853-85-3

lithium aluminium tetrahydride

phosphorus trichloride
7719-12-2, 52843-90-0

phosphorus trichloride

A

H(x)P(x)

H(x)P(x)

B

phosphan
7803-51-2

phosphan

Conditions
ConditionsYield
In diethyl ether reduction of PBr3 with LiAlH4 in ether at -115 °C;;A n/a
B 80%
In diethyl ether reduction of PBr3 with LiAlH4 in ether at -115 °C;;A n/a
B 80%
3-diethylgerma 1,2-diphenyl 1,2-diphospholane
81744-45-8

3-diethylgerma 1,2-diphenyl 1,2-diphospholane

Ge(C2H5)2C2H4P(C6H5)P(Ge(C2H5)2C6H5)
82312-29-6

Ge(C2H5)2C2H4P(C6H5)P(Ge(C2H5)2C6H5)

A

phenyldiethylgermane
79301-90-9

phenyldiethylgermane

B

2-(diethylgermyl)-1-(phenylphosphino)ethane
82312-33-2

2-(diethylgermyl)-1-(phenylphosphino)ethane

C

phosphan
7803-51-2

phosphan

D

phenylphosphane
638-21-1

phenylphosphane

Conditions
ConditionsYield
With lithium aluminium tetrahydride In diethyl ether LiAlH4 (2-fold excess) added in portions to educts mixt. in Et2O, refluxed for 6 h; hydrolyzed, extd. (Et2O), dried (Na2SO4), distd.; elem. anal.;A 79%
B 73%
C n/a
D 68%
trans-3,3-dimethyl-1,2-diphenyl-1,2,3-diphosphagermolane
78665-55-1

trans-3,3-dimethyl-1,2-diphenyl-1,2,3-diphosphagermolane

3,3-dimethyl-2-(dimethylphenylgermyl)-1-phenyl-1,2,3-diphosphagermolane
82312-28-5

3,3-dimethyl-2-(dimethylphenylgermyl)-1-phenyl-1,2,3-diphosphagermolane

A

2-(dimethylgermyl)-1-(phenylphosphino)ethane
82312-32-1

2-(dimethylgermyl)-1-(phenylphosphino)ethane

B

phosphan
7803-51-2

phosphan

C

dimethylphenylgermane
7366-21-4

dimethylphenylgermane

D

phenylphosphane
638-21-1

phenylphosphane

Conditions
ConditionsYield
With lithium aluminium tetrahydride In diethyl ether LiAlH4 (2-fold excess) added in portions to educts mixt. in Et2O, refluxed for 6 h; hydrolyzed, extd. (Et2O), dried (Na2SO4), distd.; elem. anal.;A 78%
B n/a
C 52%
D 56%
phosphorous
12185-10-3

phosphorous

benzyl alcohol
100-51-6

benzyl alcohol

phosphan
7803-51-2

phosphan

Conditions
ConditionsYield
With HCl In benzyl alcohol Electrolysis; cathode Pb, anode graphite, 20-25 °C, 0.05 A/cm**2, 30-60 V, 3.5 M HCl;72.4%
phosphorus trichloride
7719-12-2, 52843-90-0

phosphorus trichloride

phosphan
7803-51-2

phosphan

Conditions
ConditionsYield
With sodium In toluene reduction of PCl3 with Na in toluene;; heating, addn. of H2O;;70%
With Na In toluene reduction of PCl3 with Na in toluene;; heating, addn. of H2O;;70%
In water hydrolysis of PCl3;;
trimethylphosphinosilane
17446-52-5

trimethylphosphinosilane

bis(trifluoromethyl)arsane
371-74-4

bis(trifluoromethyl)arsane

A

Trimethylsilyl-bis-(trifluormethyl)-arsin
39185-10-9

Trimethylsilyl-bis-(trifluormethyl)-arsin

B

phosphan
7803-51-2

phosphan

Conditions
ConditionsYield
30 d at 20°C;A 65%
B n/a
30 d at 20°C;A 65%
B n/a
methanol
67-56-1

methanol

phosphorous
12185-10-3

phosphorous

phosphan
7803-51-2

phosphan

Conditions
ConditionsYield
With n-CH3C6H4SO3H In methanol Electrolysis; cathode Pb, anode graphite, 20-25 °C, 0.01 A/cm**2, 2.7-3.2 V, 1.8-2 M n-CH3C6H4SO3H;64.9%
With n-CH3C6H4SO3H In methanol Electrolysis; cathode Pb, anode graphite, 20-25 °C, 0.05 A/cm**2, 8.5-25 V, 1.8-2 M n-CH3C6H4SO3H;45.8%
[(1,2-bis(dicyclohexylphosphino)ethane)dichloronickel(II)]
96555-88-3

[(1,2-bis(dicyclohexylphosphino)ethane)dichloronickel(II)]

bis(trimethylsilyl)phosphine
15573-39-4

bis(trimethylsilyl)phosphine

A

chloro-trimethyl-silane
75-77-4

chloro-trimethyl-silane

B

Ni(1,2-bis(dicyclohexylphosphino)ethane)2
57603-40-4, 115223-08-0

Ni(1,2-bis(dicyclohexylphosphino)ethane)2

C

((C6H11)2PCH2CH2P(C6H11)2Ni)2P2*2C6H5CH3

((C6H11)2PCH2CH2P(C6H11)2Ni)2P2*2C6H5CH3

D

trimethylphosphinosilane
17446-52-5

trimethylphosphinosilane

E

phosphan
7803-51-2

phosphan

Conditions
ConditionsYield
In tetrahydrofuran under Ar, stirred for 3 h at 20°C; removal of the volatiles, recrystn. from toluene at -78°C, dried in vac. (20°C, 1 h); detn. of intermediates by NMR-spectroscopy;A n/a
B n/a
C 64%
D n/a
E n/a
ethoxyethoxyethanol
111-90-0

ethoxyethoxyethanol

Trimethylsilyl-dideuterophosphin
17446-53-6

Trimethylsilyl-dideuterophosphin

B

H2(2)HP
13587-50-3

H2(2)HP

C

H(2)H2P
13780-29-5

H(2)H2P

D

phosphan
7803-51-2

phosphan

Conditions
ConditionsYield
In neat (no solvent) react. of Me3SiPD2 with 1.0 equiv. of Et(OC2H4)2OH;A 10%
B 25%
C 60%
D 5%
dichloro[1,2-bis(diethylphosphino)ethane]nickel(II)
37504-45-3

dichloro[1,2-bis(diethylphosphino)ethane]nickel(II)

bis(trimethylsilyl)phosphine
15573-39-4

bis(trimethylsilyl)phosphine

A

chloro-trimethyl-silane
75-77-4

chloro-trimethyl-silane

B

bis{1,2-bis(diethylphosphino)ethane}nickel(0)
54910-60-0

bis{1,2-bis(diethylphosphino)ethane}nickel(0)

C

(((C2H5)2PCH2CH2P(C2H5)2)Ni)2P2
96555-93-0

(((C2H5)2PCH2CH2P(C2H5)2)Ni)2P2

D

trimethylphosphinosilane
17446-52-5

trimethylphosphinosilane

E

phosphan
7803-51-2

phosphan

Conditions
ConditionsYield
In tetrahydrofuran under Ar, stirred at 20°C for 2 h; removal of the volatiles (20°C, vac.), recrystn. from n-pentane at -20°C; elem. anal.;A n/a
B n/a
C 59%
D n/a
E n/a
silyl bromide
14791-57-2

silyl bromide

potassium phosphanide

potassium phosphanide

A

trisilylphosphine
15110-33-5

trisilylphosphine

B

phosphan
7803-51-2

phosphan

C

potassium bromide
7558-02-3

potassium bromide

Conditions
ConditionsYield
In Dimethyl ether reaction starts at -120°C and finishes at -40°C;; distillation in high vacuum;;A 55%
B n/a
C n/a
In Dimethyl ether reaction starts at -120°C and finishes at -40°C;; distillation in high vacuum;;A 55%
B n/a
C n/a
trimethylphosphinosilane
17446-52-5

trimethylphosphinosilane

tert-butyl alcohol-d
3972-25-6

tert-butyl alcohol-d

B

H2(2)HP
13587-50-3

H2(2)HP

C

H(2)H2P
13780-29-5

H(2)H2P

D

phosphan
7803-51-2

phosphan

Conditions
ConditionsYield
In neat (no solvent) react. of Me3SiPH2 with 1.0 equiv. of t-BuOD;A 5%
B 55%
C 10%
D 30%
(Cy2P(CH2)2PCy2)Ni(η-(PSiMe3)2)
96555-90-7

(Cy2P(CH2)2PCy2)Ni(η-(PSiMe3)2)

A

((C6H11)2PCH2CH2P(C6H11)2Ni)2P2
96555-95-2

((C6H11)2PCH2CH2P(C6H11)2Ni)2P2

B

Methoxytrimethylsilane
1825-61-2

Methoxytrimethylsilane

C

phosphan
7803-51-2

phosphan

Conditions
ConditionsYield
With methanol In Cyclopentane under Ar, temp. > 50°C; observed by NMR-spectroscopy;A 50%
B n/a
C n/a
With methanol In toluene under Ar, excess CH3OH, 24 h at room temp.; observed by NMR-spectroscopy;A 50%
B n/a
C n/a
lithium hydride

lithium hydride

phosphorus trichloride
7719-12-2, 52843-90-0

phosphorus trichloride

A

hexachlorocyclohexaphosphane
114597-27-2

hexachlorocyclohexaphosphane

B

phosphan
7803-51-2

phosphan

Conditions
ConditionsYield
In tetrahydrofuran byproducts: LiCl, H2; Ar atmosphere, addn. of soln. of PCl3 (-78°C) to suspn. of LiH (-40°C, over 45 min, stirring); filtn., removal of PH3 (-60°C, vacuum), filtn.; not isolated, soln. contg. ca. 10% impurities;A 42%
B n/a
[(1,2-bis(dicyclohexylphosphino)ethane)dichloronickel(II)]
96555-88-3

[(1,2-bis(dicyclohexylphosphino)ethane)dichloronickel(II)]

trimethylphosphinosilane
17446-52-5

trimethylphosphinosilane

A

chloro-trimethyl-silane
75-77-4

chloro-trimethyl-silane

B

{(Cy2P(CH2)2PCy2)Ni(η-(PH)2)}

{(Cy2P(CH2)2PCy2)Ni(η-(PH)2)}

C

phosphan
7803-51-2

phosphan

Conditions
ConditionsYield
In tetrahydrofuran under Ar, THF soln. of (DCPE)NiCl2 frozen by liquid N2, addn. of (CH3)3SiPH2, mixt. warmed to -20°C and stirred for 12 h; volume reduced in vac. at -20°C, cooled for 24 h at -78°C, pptn., filtration at -20°C, dried in vac. at -20°C;A n/a
B 39%
C n/a
1,2-bis(diphenylphosphino)ethane nickel(II) chloride
14647-23-5

1,2-bis(diphenylphosphino)ethane nickel(II) chloride

bis(trimethylsilyl)phosphine
15573-39-4

bis(trimethylsilyl)phosphine

A

Ni(0)(1,2-bis(diphenylphosphino)ethane)2
15628-25-8

Ni(0)(1,2-bis(diphenylphosphino)ethane)2

B

(((C6H5)2PCH2CH2P(C6H5)2)Ni)2P2*3C6H5CH3

(((C6H5)2PCH2CH2P(C6H5)2)Ni)2P2*3C6H5CH3

C

trimethylphosphinosilane
17446-52-5

trimethylphosphinosilane

D

phosphan
7803-51-2

phosphan

Conditions
ConditionsYield
In tetrahydrofuran under Ar, stirred for 2 h at 20°C; volume reduced, cooled to -78°C for 2 d, pptn. of (DPPE)2Ni, evapn. of mother liquor, recrystn. from toluene at -20°C, dried in vac. (20°C, 1 h); elem. anal.;A n/a
B 31%
C n/a
D n/a
tetrachlorosilane
10026-04-7, 53609-55-5

tetrachlorosilane

A

tetraphosphanylsilane
214424-22-3

tetraphosphanylsilane

B

HSi(PH2)3
22571-35-3

HSi(PH2)3

C

phosphan
7803-51-2

phosphan

Conditions
ConditionsYield
In further solvent(s) addn. of SiCl4 to soln. of Li-salt (in tetraethylene glycol dimethylether, -30°C, stirring); volatile compds. removal (1E-3 Torr, 20.degrree.C), collection in trap (-196°C), fractional condensation, collection from trap at -10°C;A 18%
B n/a
C n/a
lithium aluminium tetrahydride
16853-85-3

lithium aluminium tetrahydride

A

trifluoromethylphosphine
420-52-0

trifluoromethylphosphine

B

phosphan
7803-51-2

phosphan

Conditions
ConditionsYield
In diethyl ether 20°C;A 8%
B n/a
In dibutyl ether 70°C;A 6%
B n/a

A

diphosphane
12185-09-0

diphosphane

B

P4S3H2
19549-58-7

P4S3H2

C

phosphan
7803-51-2

phosphan

Conditions
ConditionsYield
With Sn(C4H9)3H In toluene under N2, P4S3I2 in toluene stirred at 60°C, cooled to 20°C, dropwise addn. of Sn(n-Bu)3H in toluene over 45 min, stirred for 15 min; not isolated, several unidentified byproducts;A <1
B 3%
C n/a
hypophosphorous acid
6303-21-5

hypophosphorous acid

A

hydrogen
1333-74-0

hydrogen

B

phosphan
7803-51-2

phosphan

Conditions
ConditionsYield
In water Electrolysis; Pb cathode; temp. 19-20°C, 11.3 M H3PO2, current density 0.15 A/cm**2 in H2O;A n/a
B 1%
In sulfuric acid aq. H2SO4; Electrolysis; Pb or Cu or Hg cathode; temp. 21-61°C, H3PO2 concn. from 8.06 to 15.5 mol/l, current density from 0.05 to 0.3 A/cm**2;
In water; ethylene glycol Electrolysis; Pb cathode; temp. 60°C, 5.7 M H3PO2, current density 0.30 A/cm**2in 2:1 mixt. of C2H4(OH)2 and H2O;
In ethylene glycol Electrolysis; Pb cathode; temp. 55°C, 5.7 M H3PO2, current density 0.15 A/cm**2in C2H4(OH)2;
lithium aluminium tetrahydride
16853-85-3

lithium aluminium tetrahydride

phosphorus trichloride
7719-12-2, 52843-90-0

phosphorus trichloride

A

aluminium trichloride
7446-70-0

aluminium trichloride

B

phosphan
7803-51-2

phosphan

C

lithium chloride

lithium chloride

Conditions
ConditionsYield
In diethyl ether reduction of PCl3 with LiAlH4 in ether at 0 °C;;
In diethyl ether reduction of PCl3 with LiAlH4 in ether at 75 °C;;A n/a
B 0.25%
C n/a
In diethyl ether reduction of PCl3 with LiAlH4 in ether at 75 °C;;A n/a
B 0.25%
C n/a
In diethyl ether reduction of PCl3 with LiAlH4 in ether at 0 °C;;
diphosphorus tetraiodide
13455-00-0

diphosphorus tetraiodide

phosphan
7803-51-2

phosphan

Conditions
ConditionsYield
In water hydrolysis of P2I4;;
With alkali lye In not given reaction of concd. alkali lye with P2I4;;
In water hydrolysis of P2I4;;
With alkali lye In not given reaction of concd. alkali lye with P2I4;;
ammonium bromide

ammonium bromide

Na4P2

Na4P2

phosphan
7803-51-2

phosphan

Conditions
ConditionsYield
In ammonia react. of Na4P2 with NH4Br in liquid NH3;;
ammonium bromide

ammonium bromide

dihydrogen phosphide sodium

dihydrogen phosphide sodium

phosphan
7803-51-2

phosphan

Conditions
ConditionsYield
In ammonia react. of NaPH2 with NH4Br in liquid NH3;;
monogermylphosphane
13573-06-3

monogermylphosphane

hydrogen sulfide
7783-06-4

hydrogen sulfide

A

digermane
13818-89-8

digermane

B

phosphan
7803-51-2

phosphan

Conditions
ConditionsYield
molar ratio of monogermylphosphane and H2S = 2 : 1, in closed tube, room temp.;
(η(5)-pentamethyl-2,3-dihydro-1,3-diborolyl)(η(5)-pentamethylcyclopentadienyl)ruthenium

(η(5)-pentamethyl-2,3-dihydro-1,3-diborolyl)(η(5)-pentamethylcyclopentadienyl)ruthenium

phosphan
7803-51-2

phosphan

(η5-pentamethyl-2,3-dihydro-1,3-diborolyl)(η5-pentamethylcyclopentadienyl)ruthenium phosphine
676565-01-8

(η5-pentamethyl-2,3-dihydro-1,3-diborolyl)(η5-pentamethylcyclopentadienyl)ruthenium phosphine

Conditions
ConditionsYield
In hexane gas. PH3 was bubbled through a hexane soln. of Ru-complex for 5 min at aflow rate of 10 ml/min; evapd. in vacuo;100%
chloro(cyclopentadienyl)bis(triphenylphosphine)ruthenium (II)
32993-05-8

chloro(cyclopentadienyl)bis(triphenylphosphine)ruthenium (II)

thallium(I) hexafluorophosphate

thallium(I) hexafluorophosphate

phosphan
7803-51-2

phosphan

[CpRu(PPh3)2(PH3)]PF6
862288-04-8

[CpRu(PPh3)2(PH3)]PF6

Conditions
ConditionsYield
In tetrahydrofuran; dichloromethane byproducts: TlCl; PH3 was bubbled for 5 min through soln. Ru complex in CH2Cl2-THF and stirred at room temp. for 1 h; soln. was filtered and evapd. in vacuo, recrystn. from CH2Cl2-hexane;98%
SeCl3(1+)*AlCl4(1-)=(SeCl3)(AlCl4)
12588-13-5

SeCl3(1+)*AlCl4(1-)=(SeCl3)(AlCl4)

phosphan
7803-51-2

phosphan

SeP(1+)*AlCl4(1-)=(SeP)(AlCl4)
160889-17-8

SeP(1+)*AlCl4(1-)=(SeP)(AlCl4)

Conditions
ConditionsYield
In further solvent(s) byproducts: HCl; a reactor filled with (SeCl3)(AlCl4) under N2 is cooled to -196°C, after evacuation PH3 is condensed on the Se-compd.; reaction mixt. warmed to room temp., reaction at 21°C for 24 h; removal of volatile compds. and PH3 by condensation at room temp., residue is dried for 15 min in dynamic vacuum; elem. anal.;98%
ruthenium(III) chloride trihydrate

ruthenium(III) chloride trihydrate

phosphan
7803-51-2

phosphan

trans-[RuCl2(PH3)4]
1127971-08-7, 1135585-05-5

trans-[RuCl2(PH3)4]

Conditions
ConditionsYield
In methanol inert atmosphere or vac.; RuCl3*3H2O (2.91 mmol) dissolved in degassed meOH; stirred (room temp.); excess PH3 (20 psi) added; heated (70°C, 4 h, stirring); cooled to room temp.; PH3 removed (vac.); volatile removed (vac.); elem.anal.;98%
Ru(Ph)Cl(CO)(triphenylphosphine)2

Ru(Ph)Cl(CO)(triphenylphosphine)2

phosphan
7803-51-2

phosphan

RuCl(Ph)(PH3)(CO)(PPh3)2

RuCl(Ph)(PH3)(CO)(PPh3)2

Conditions
ConditionsYield
In benzene RuCl(Ph)(CO)(PPh3)2 was suspended in benzene under N2 and PH3 introduced into the mixt.; evapn.; recrystn. from CH2Cl2/ethanol; elem. anal.;97%
phosphan
7803-51-2

phosphan

chlorobis(pentafluorophenyl)phosphane
5032-90-6

chlorobis(pentafluorophenyl)phosphane

bis(pentafluorophenyl)phosphane
13917-54-9

bis(pentafluorophenyl)phosphane

Conditions
ConditionsYield
in bomb tube from -196 to 20°C,; extn. (ether); evapn., sublimation in vac.(50-60°C);96.3%
in bomb tube from -196 to 20°C,; extn. (ether); evapn., sublimation in vac.(50-60°C);96.3%
Conditions
ConditionsYield
In benzene Into a suspension of IrHCl2(PPh3)3 in benzene was introduced an excess of PH3, then refluxed; evapn.; recrystn. from CH2Cl2/ethanol; elem. anal.;96%
hydridocarbonylchlorotris(triphenylphosphine)osmium(II)
16971-31-6, 36007-23-5

hydridocarbonylchlorotris(triphenylphosphine)osmium(II)

phosphan
7803-51-2

phosphan

OsHCl(PH3)(CO)(PPh3)2*0.75CH2Cl2

OsHCl(PH3)(CO)(PPh3)2*0.75CH2Cl2

Conditions
ConditionsYield
In benzene In suspension of OsHCl(CO)(PPh3)3 in oxygen-free benzene was introduced an excess of PH3, stirred 10 min, then refluxed; evapn.; recrystn. from CH2Cl2/ethanol; elem. anal.;95%
undecacarbonyl(acetonitrile)triosmium
133869-39-3, 65702-94-5

undecacarbonyl(acetonitrile)triosmium

phosphan
7803-51-2

phosphan

{Os3(CO)11(PH3)}
100012-34-8

{Os3(CO)11(PH3)}

Conditions
ConditionsYield
In toluene 40°C;95%
In toluene a suspn. of the Os compound in toluene is heated to 40°C under PH3 until the reagent cluster has dissolved; reaction mixt. cooled to room temp. and purged of excess of PH3; solvent removed in vac.; recrystn. from toluene/hexane at -80°C; elem. anal.;75%
Os3(CO)11(P(Si(CH3)3)3)
100033-45-2

Os3(CO)11(P(Si(CH3)3)3)

phosphan
7803-51-2

phosphan

{Os3(CO)11(PH3)}
100012-34-8

{Os3(CO)11(PH3)}

Conditions
ConditionsYield
With methanol In dichloromethane 3 equiv of MeOH;95%
pentacarbonyl(tetrafluoroborato)rhenium
78670-75-4

pentacarbonyl(tetrafluoroborato)rhenium

phosphan
7803-51-2

phosphan

pentacarbonyl(phosphane)rhenium tetrafluoroborate

pentacarbonyl(phosphane)rhenium tetrafluoroborate

Conditions
ConditionsYield
In dichloromethane under N2, PH3 bubbled through soln. of (OC)5ReFBF3 in CH2Cl2 for 1h; ppt. isolated, washed with CH2Cl2, dried in vac.; elem. anal.;95%
methylene chloride
74-87-3

methylene chloride

phosphan
7803-51-2

phosphan

A

methylphosphine
593-54-4

methylphosphine

B

dimethylphosphane
676-59-5

dimethylphosphane

C

chloro-tetramethyl-phosphorane
880343-42-0

chloro-tetramethyl-phosphorane

D

trimethylphosphane
594-09-2

trimethylphosphane

Conditions
ConditionsYield
With potassium hydroxide; PTK In toluene at 15℃; for 18h;A 4%
B 92%
C 4 g
D 2%
methylene chloride
74-87-3

methylene chloride

phosphan
7803-51-2

phosphan

A

methylphosphine
593-54-4

methylphosphine

B

dimethylphosphane
676-59-5

dimethylphosphane

Conditions
ConditionsYield
With potassium hydroxide; PTK In toluene at 15 - 30℃; for 2h;A 90%
B 5%
With potassium hydroxide In dimethyl sulfoxide at 15 - 25℃; for 5h;A 77%
B 9%
With potassium hydroxide In water; dimethyl sulfoxide at 15 - 25℃; for 5h;A 77%
B 9%
(carbonyl)(chloro)(hydrido)tris(triphenylphosphine)ruthenium(II)
157072-60-1, 61521-25-3, 166941-05-5, 16971-33-8

(carbonyl)(chloro)(hydrido)tris(triphenylphosphine)ruthenium(II)

phosphan
7803-51-2

phosphan

RuHCl(PH3)(CO)(PPh3)2*0.25CH2Cl2

RuHCl(PH3)(CO)(PPh3)2*0.25CH2Cl2

Conditions
ConditionsYield
In benzene Into a suspension of RuHCl(CO)(PPh3)3 in oxygen-free benzene was introduced an excess of PH3, stirred 10 min, then refluxed; Column chromy. (Florisil, CH2Cl2), recrystn. from CH2Cl2/ethanol; elem. anal.;90%
phosphan
7803-51-2

phosphan

IrH2Cl(PH3)(PPh3)2*CH2Cl2

IrH2Cl(PH3)(PPh3)2*CH2Cl2

Conditions
ConditionsYield
In benzene Into a suspension of IrH2Cl(PPh3)3 in oxygen-free benzene was introduced an excess of PH3, stirred 10 min, then refluxed for 5 min.; evapn.; recrystn. from CH2Cl2/ethanol; elem. anal.;90%
phosphan
7803-51-2

phosphan

1,3-Dichloropropane
142-28-9

1,3-Dichloropropane

1,3-bisphosphinopropane
3619-91-8

1,3-bisphosphinopropane

Conditions
ConditionsYield
With potassium hydroxide In Petroleum ether at 20℃; for 1h;89%
1-bromo-butane
109-65-9

1-bromo-butane

phosphan
7803-51-2

phosphan

n-butylphosphine
1732-74-7

n-butylphosphine

Conditions
ConditionsYield
With potassium hydroxide In pentane at 20℃; for 1h;88%
With potassium hydroxide In dimethyl sulfoxide at 20℃; for 2h;85%
trifluoromethyldiiodophosphine
421-59-0

trifluoromethyldiiodophosphine

phosphan
7803-51-2

phosphan

trifluoromethylphosphine
420-52-0

trifluoromethylphosphine

Conditions
ConditionsYield
88%
240°C, 4 h;13%
repeated distn.;
tricarbonyl chromium (0) hexamethylborazine
12108-70-2

tricarbonyl chromium (0) hexamethylborazine

phosphan
7803-51-2

phosphan

Conditions
ConditionsYield
In cyclohexane at room temp.;;88%
In cyclohexane at room temp.;;88%
phosphan
7803-51-2

phosphan

benzyl chloride
100-44-7

benzyl chloride

benzylphosphine
14990-01-3

benzylphosphine

Conditions
ConditionsYield
With potassium hydroxide In dimethyl sulfoxide at 20℃; for 1h;87%
(η5-cyclopentadienyl)bis(triphenylphosphane)chloridoosmium(II)
79151-48-7

(η5-cyclopentadienyl)bis(triphenylphosphane)chloridoosmium(II)

silver trifluoromethanesulfonate
2923-28-6

silver trifluoromethanesulfonate

phosphan
7803-51-2

phosphan

(η5-cyclopentadienyl)bis(triphenylphosphane)(phosphine)osmium(II) triflate
1232174-60-5

(η5-cyclopentadienyl)bis(triphenylphosphane)(phosphine)osmium(II) triflate

Conditions
ConditionsYield
In tetrahydrofuran; dichloromethane byproducts: AgCl; gas PH3 gentlu bubbled for 5 min through soln. of Os complex and AgOTf in CH2Cl2/THF 1:1 v/v, stirred at room temp. for 1 h; filtered, evapd.(vac.), recrystd.(CH2Cl2/n-hexane), elem. anal.;85%
phosphan
7803-51-2

phosphan

hexadecanyl bromide
112-82-3

hexadecanyl bromide

n-Hexadecylphosphin
81110-85-2

n-Hexadecylphosphin

Conditions
ConditionsYield
With potassium hydroxide In toluene for 3h;84%
polytetrafluoroethylene
116-14-3

polytetrafluoroethylene

phosphan
7803-51-2

phosphan

A

Tetrafluor-1,2-diphosphanyl-aethan
421-81-8

Tetrafluor-1,2-diphosphanyl-aethan

B

(1,1,2,2-tetrafluoro-ethyl)-phosphine
1514-99-4

(1,1,2,2-tetrafluoro-ethyl)-phosphine

C

bis-(1,1,2,2-tetrafluoro-ethyl)-phosphine
762-92-5

bis-(1,1,2,2-tetrafluoro-ethyl)-phosphine

Conditions
ConditionsYield
Irradiation (UV/VIS); 20°C, 700 Torr, 16+19 h; UV;A 9%
B 84%
C 2%
Irradiation (UV/VIS); 20°C, 700 Torr, 16+19 h; UV;A 9%
B 84%
C 2%
OsCl(p-tolyl)(CO)(PPh3)2

OsCl(p-tolyl)(CO)(PPh3)2

phosphan
7803-51-2

phosphan

OsCl(p-tolyl)(PH3)(CO)(PPh3)2*0.5CH2Cl2

OsCl(p-tolyl)(PH3)(CO)(PPh3)2*0.5CH2Cl2

Conditions
ConditionsYield
In benzene Into a suspension of OsCl(C6H4CH3)(CO)(PPh3)23 in benzene under N2 was introduced an excess of PH3, then heated for 5 min.; Column chromy. (silica, CH2Cl2), recrystn. from CH2Cl2/ethanol; elem. anal.;83%
phosphan
7803-51-2

phosphan

1,4-dibromopentane
626-87-9

1,4-dibromopentane

A

1,4-Bis-phosphanyl-pentane
128503-78-6

1,4-Bis-phosphanyl-pentane

B

methyl-2 phospholanne
262593-97-5

methyl-2 phospholanne

Conditions
ConditionsYield
With potassium hydroxide In dimethyl sulfoxide at 20℃; for 3h;A 5%
B 80%
With potassium hydroxide In dimethyl sulfoxide at 30℃; for 3h;A 5%
B 80%

7803-51-2Relevant articles and documents

Kinetics of phosphine hydroxymethylation with formaldehyde

Grekov,Novakov

, p. 358 - 366 (2006)

The kinetics of phosphine hydroxymethylation with formaldehyde is studied. In the absence of a catalyst, phosphine reacts slowly with formaldehyde under normal conditions. Taken separately, amines, hydrochloric acid, and nickel chloride have a low catalytic activity, but the addition of a primary aliphatic amine to nickel chloride effectively increases the hydroxymethylation rate. A probable reaction mechanism is suggested. MAIK Nauka/ Interperiodica 2006.

Chapman, D. L.

, p. 734 - 747 (1899)

Wiles, D. M.,Winkler, C. A.

, p. 902 - 903 (1957)

West, C. A.

, p. 923 - 929 (1902)

Electrolytic formation of phosphine from red phosphorus in aqueous solutions

Shalashova,Smirnov,Nikolashin,Turygin,Khudenko,Brekhovskikh,Fedorov,Tomilov

, p. 236 - 241 (2006)

Data are presented on the current-voltage behavior of red phosphorus suspensions at gold, platinum, lead, and cadmium cathodes in a 1.0 M Na 2CO3 solution. In experiments with a red phosphorus suspension in alkaline solutions, the fo

Evers, E. C.,Finn, J. M.

, p. 559 - 563 (1953)

Martin, D. R.,Dial, R. E.

, p. 852 - 856 (1950)

Organoactinide Phosphine/Phosphite Coordination Chemistry. Facile Hydride-Induced Dealkoxylation and the Formation of Actinide Phosphinidene Complexes

Duttera, Michael R.,Day, Victor W.,Marks, Tobin J.

, p. 2907 - 2912 (1984)

This contribution reports a study of the reaction of the organoactinide hydrides (Cp'2MH2)2 (Cp'=η5-(CH3)5C5, M=Th,U) with trimethyl phosphite.Quantitative transposition of hydryde and methoxide ligands occurs to yield the corresponding Cp'2M(OCH3)2 complexes (synthesized independently from Cp'2MCl2 and NaOCH3) and the phosphinidene-bridged methoxy complexes 2PH.The reaction is considerably more rapid for M=U than for M=Th.The new compounds were characterized by elemental analysis, 1H and 31P NMR, infrared spectroscopy, magnetic susceptibility, and D2O hydrolysis.The molecular structure of 2PH has been determined by single-crystal X-ray diffraction techniques.It crystallizes in the monoclinic space group P2/n with a=13.926(3) Angstroem, b=10.765(3) Angstroem, c=15.282(4) Angstroem, β=107.63(2) deg, and Z=2.Full-matrix least-squares refinement of the structural parameters for the 24 independent anisotropic non-hydrogen atoms has converged to R1 (unweighted, based on F) = 0.041 for 1677 independent absorption-corrected reflections having 2ΘMoKα3?(I).The 2PH molecule has C2 symmetry, with the μ-PH2- ligand lying on a crystallographic twofold axis.The coordination geometry about each uranium ion is of the typical pseudotetrahedral Cp'2M(X)Y type, with U-P=2.743(1) Angstroem, U-O=2.046(14) Angstroem, U-P-U=157.7(2) deg, and U-O-C(methyl)=178(1) deg.Evidence is presented that other >P-OR linkages react in a similar manner.

Langmuir,Mackay

, p. 1708 (1914)

Baudler, M.,Schmidt, L.

, p. 577 - 578 (1959)

Expedient Route to Chalcogenophosphinates with Glucose Moieties via Todd-Atherton-Like Coupling between Secondary Phosphine Chalcogenides and Diacetone- d -Glucose in the CCl4/Et3N System

Volkov, Pavel A.,Ivanova, Nina I.,Gusarova, Nina K.,Sukhov, Boris G.,Khrapova, Kseniya O.,Zelenkov, Lev E.,Smirnov, Vladimir I.,Borodina, Tatyana N.,Vakul'Skaya, Tamara I.,Khutsishvili, Spartak S.,Trofimov, Boris A.

, p. 329 - 334 (2015)

Secondary phosphine chalcogenides react with diacetone-d-glucose (DAG) in the system CCl4/Et3N (70°C, 4-24 h) to afford DAG chalcogenophosphinates in up to 79% yield, thus paving a short way to optically active chalcogenophosphinates with glucose moieties. As an example, a mild regioselective hydrolysis (70 °C, aqueous MeCOOH) of DAG bis(2-phenylethyl)selenophosphinate) obtained leads to monoacetone-d-glucose bis(2-phenylethyl)selenophosphinate.

Evers, C.,Street, E. H.

, p. 5726 - 5730 (1956)

Street, E. H.,Gardner, D. M.,Evers, E. C.

, p. 1819 - 1822 (1958)

Photocatalytic Arylation of P4 and PH3: Reaction Development Through Mechanistic Insight

Cammarata, Jose,Gschwind, Ruth M.,Lennert, Ulrich,Rothfelder, Robin,Scott, Daniel J.,Streitferdt, Verena,Wolf, Robert,Zeitler, Kirsten

supporting information, p. 24650 - 24658 (2021/10/14)

Detailed 31P{1H} NMR spectroscopic investigations provide deeper insight into the complex, multi-step mechanisms involved in the recently reported photocatalytic arylation of white phosphorus (P4). Specifically, these studies have identified a number of previously unrecognized side products, which arise from an unexpected non-innocent behavior of the commonly employed terminal reductant Et3N. The different rate of formation of these products explains discrepancies in the performance of the two most effective catalysts, [Ir(dtbbpy)(ppy)2][PF6] (dtbbpy=4,4′-di-tert-butyl-2,2′-bipyridine) and 3DPAFIPN. Inspired by the observation of PH3 as a minor intermediate, we have developed the first catalytic procedure for the arylation of this key industrial compound. Similar to P4 arylation, this method affords valuable triarylphosphines or tetraarylphosphonium salts depending on the steric profile of the aryl substituents.

Generation of a π-Bonded Isomer of [P4]4? by Aluminyl Reduction of White Phosphorus and its Ammonolysis to PH3

Aldridge, Simon,Ellwanger, Mathias A.,Heilmann, Andreas,Roy, Matthew M. D.

supporting information, p. 26550 - 26554 (2021/11/16)

By employing the highly reducing aluminyl complex [K{(NON)Al}]2 (NON=4,5-bis(2,6-diisopropylanilido)-2,7-di-tert-butyl-9,9-dimethylxanthene), we demonstrate the controlled formation of P42? and P44? complexes from white phosphorus, and chemically reversible inter-conversion between them. The tetra-anion features a unique planar π-bonded structure, with the incorporation of the K+ cations implicit in the use of the anionic nucleophile offering additional stabilization of the unsaturated isomer of the P44?fragment. This complex is extremely reactive, acting as a source of P3?: exposure to ammonia leads to the release of phosphine (PH3) under mild conditions (room temperature and pressure), which contrast with those necessitated for the direct combination of P4 and NH3 (>5 kbar and >250 °C).

Dual Role of Doubly Reduced Arylboranes as Dihydrogen- and Hydride-Transfer Catalysts

Von Grotthuss, Esther,Prey, Sven E.,Bolte, Michael,Lerner, Hans-Wolfram,Wagner, Matthias

supporting information, p. 6082 - 6091 (2019/04/17)

Doubly reduced 9,10-dihydro-9,10-diboraanthracenes (DBAs) are introduced as catalysts for hydrogenation as well as hydride-transfer reactions. The required alkali metal salts M2[DBA] are readily accessible from the respective neutral DBAs and Li metal, Na metal, or KC8. In the first step, the ambiphilic M2[DBA] activate H2 in a concerted, metal-like fashion. The rates of H2 activation strongly depend on the B-bonded substituents and the counter cations. Smaller substituents (e.g., H, Me) are superior to bulkier groups (e.g., Et, pTol), and a Mes substituent is even prohibitively large. Li+ ions, which form persistent contact ion pairs with [DBA]2-, slow the H2-addition rate to a higher extent than more weakly coordinating Na+/K+ ions. For the hydrogenation of unsaturated compounds, we identified Li2[4] (Me substituents at boron) as the best performing catalyst; its substrate scope encompasses Ph(H)C=NtBu, Ph2C=CH2, and anthracene. The conversion of E-Cl to E-H bonds (E = C, Si, Ge, P) was best achieved by using Na2[4]. The latter protocol provides facile access also to Me2Si(H)Cl, a most important silicone building block. Whereas the H2-transfer reaction regenerates the dianion [4]2- and is thus immediately catalytic, the H--transfer process releases the neutral 4, which has to be recharged by Na metal before it can enter the cycle again. To avoid Wurtz-type coupling of the substrate, the reduction of 4 must be performed in the absence of the element halide, which demands an alternating process management (similar to the industrial anthraquinone process).

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 7803-51-2