96-26-4Relevant articles and documents
Earth-abundant manganese oxide nanoneedle as highly efficient electrocatalyst for selective glycerol electro-oxidation to dihydroxyacetone
Chiang, Chia-Ying,Tran, Giang-Son,Vo, Truong-Giang
, p. 139 - 148 (2021/10/07)
In this study, earth-abundant manganese oxide (MnO2) was used as a catalyst for the electrocatalytic glycerol oxidation with a satisfactory yield and high selectivity under mild pH media; that is, the high current density of 6.0 mA cm?2 and selectivity of ca. 46% for dihydroxyacetone (DHA). MnO2 also exhibited reasonable durability without considerable changes for 3 h. More importantly, by combination of operando Raman and electrochemical studies, a tentative reaction pathway was also proposed. It is found that high selectivity of formic acid at low potential was due to predominant coverage of α-MnO2 on catalyst surface. Meanwhile, at high applied potential, partial transformation of α-MnO2 to δ-MnO2 causes decreasing C-C bond cleavage, leading to high DHA selectivity. The results of this work not only demonstrate that MnO2 holds promise as an efficient electrocatalyst for selectively producing DHA but also provides realistic details on electrochemically generated species under working condition.
One-pot biotransformation of glycerol into serinol catalysed by biocatalytic composites made of whole cells and immobilised enzymes
Ripoll, Magdalena,Velasco-Lozano, Susana,Jackson, Erienne,Diamanti, Eleftheria,Betancor, Lorena,López-Gallego, Fernando
supporting information, p. 1140 - 1146 (2021/02/26)
Biocatalytic cascades afford the development of economically sustainable and green processes. Herein we examined the unprecedented coupling of co-immobilisedGluconobacter oxydansand an isolated transaminase to synthesise serinol from glycerol. Through this approach, we manufactured up to 36 mM serinol, the highest titer ever reported for a non-fermentative biosynthesis. More importantly, similar productivities are obtained starting from the industrial by-product crude glycerol, demonstrating the possibilities of this hybrid heterogenenous biocatalyst for valorising bio-based raw materials.
Selective catalytic oxidation of diglycerol
Wang, Huan,Vu, Nam Duc,Chen, Guo-Rong,Métay, Estelle,Duguet, Nicolas,Lemaire, Marc
, p. 1154 - 1159 (2021/02/26)
The selective oxidation of α,α-diglycerol was studied using oxygen as a clean oxidant in the presence of a palladium/neocuproine complex. After optimization of the reaction parameters, the mono-oxidation product was obtained with 93% NMR yield (up to 76% isolated yield). The product was named “diglycerose” considering that it mainly exists as a cyclic hemi-ketal form.
Assembly of platinum nanoparticles and single-atom bismuth for selective oxidation of glycerol
Huang, Ning,Jiang, Dong,Jiang, Pingping,Leng, Yan,Lu, Yubing,Tian, Jinshu,Yue, Chenguang,Zhang, Pingbo,Zhang, Zihao
supporting information, p. 25576 - 25584 (2021/12/07)
Selective oxidation of the secondary hydroxyl group of glycerol to dihydroxyacetone (DHA) is an extremely challenging yet important reaction. The main difficulty is that the three hydroxyl groups in glycerol are prone to randomly oxidize, resulting in an unsatisfactory DHA selectivity. We show here that an assembly of platinum nanoparticles (NPs, ~2 nm) and N-stabilized single-atom bismuth (Bi), namely Pt/Bi@NC, shows a record-high DHA selectivity of ~95.0% towards glycerol oxidation under optimized reaction conditions. Characterization and theoretical calculations confirm that single-atom Bi in the vicinity of Pt NPs provides a preferred site to chelate with the primary -OH of glycerol, and its secondary -OH is prone to bind to a surface Pt atom of a Pt NP with a shorter Pt-H bond length. This as-formed unique adsorption configuration of glycerol on the Pt-Bi dual site significantly facilitates the oxidation of the secondary -OH of glycerol, thus contributing to a record-high selectivity to DHA. This journal is
Design of a synthetic enzyme cascade for the: In vitro fixation of a C1carbon source to a functional C4sugar
Güner, Samed,Pick, André,Sieber, Volker,Wegat, Vanessa
supporting information, p. 6583 - 6590 (2021/09/10)
Realizing a sustainable future requires intensifying the waste stream conversion, such as converting the greenhouse gas carbon dioxide into value-added products. In this paper, we focus on utilizing formaldehyde as a C1 carbon source for enzymatic C-C bond formation. Formaldehyde can be sustainably derived from other C1 feedstocks, and in this work, we designed a synthetic enzyme cascade for producing the functional C4 sugar erythrulose. This involved tailoring the enzyme formolase, which was optimized for fusing formaldehyde, from a three-carbon producer (dihydroxyacetone) to sets of variants with enhanced two-carbon (glycolaldehyde) or four-carbon (erythrulose) activity. To achieve this, a high-throughput combinatorial screening was developed, and every single variant was evaluated in terms of glycolaldehyde, dihydroxyacetone and erythrulose activity. By applying the two most promising variants in an enzyme cascade, we were able to show for the first time production of ERY starting from a C1 carbon source. In addition, we demonstrated that one of our tailored formolase variants was able to convert 25.0 g L-1 glycolaldehyde to 24.6 g L-1 erythrulose (98% theoretical yield) in a fully atom-economic biocatalytic process. This represents the highest achieved in vitro concentration of erythrulose to date.
Enantioselective Reductive Oligomerization of Carbon Dioxide into l-Erythrulose via a Chemoenzymatic Catalysis
Bontemps, Sébastien,Clapés, Pere,Desmons, Sarah,Dumon, Claire,Fauré, Régis,Grayson-Steel, Katie,Hurtado, John,Nu?ez-Dallos, Nelson,Vendier, Laure
supporting information, p. 16274 - 16283 (2021/10/12)
A cell-free enantioselective transformation of the carbon atom of CO2has never been reported. In the urgent context of transforming CO2into products of high value, the enantiocontrolled synthesis of chiral compounds from CO2would be highly desirable. Using an original hybrid chemoenzymatic catalytic process, we report herein the reductive oligomerization of CO2into C3(dihydroxyacetone, DHA) and C4(l-erythrulose) carbohydrates, with perfect enantioselectivity of the latter chiral product. This was achieved with the key intermediacy of formaldehyde. CO2is first reduced selectively by 4e-by an iron-catalyzed hydroboration reaction, leading to the isolation and complete characterization of a new bis(boryl)acetal compound derived from dimesitylborane. In an aqueous buffer solution at 30 °C, this compound readily releases formaldehyde, which is then involved in selective enzymatic transformations, giving rise either (i) to DHA using a formolase (FLS) catalysis or (ii) to l-erythrulose with a cascade reaction combining FLS and d-fructose-6-phosphate aldolase (FSA) A129S variant. Finally, the nature of the synthesized products is noteworthy, since carbohydrates are of high interest for the chemical and pharmaceutical industries. The present results prove that the cell-freede novosynthesis of carbohydrates from CO2as a sustainable carbon source is a possible alternative pathway in addition to the intensely studied biomass extraction andde novosyntheses from fossil resources.
Photocatalytic Conversion of Xylose to Xylitol over Copper Doped Zinc Oxide Catalyst
Rohini,Hebbar, H. Umesh
, p. 2583 - 2594 (2021/02/05)
Abstract: In the present investigation, photocatalytic conversion of xylose by Copper (Cu) doped Zinc oxide (ZnO) was investigated under Ultraviolet Light emitting diode (UVA-LED) illumination. Photocatalysts were synthesized successfully by chemical prec
A proof of concept for cooperation from the quinone groups adjacent to N sites during the metal-free oxidation of glycerol by nitrogen-rich graphene oxide
Barlocco, Ilaria,Dogra, Ashima,Gupta, Neeraj,Sharma, Vinit,Villa, Alberto
supporting information, p. 19651 - 19654 (2021/11/12)
Glycerol is a key by-product in biodiesel production and can be utilized in the synthesis of value-added chemicals. The low cost and fairly abundant availability of glycerol can be advantageous in producing a variety of pharmaceuticals and cosmetic products. Among the various catalytic transformations, selective oxidation is a promising pathway for the valorization of glycerol. In this present report, we deliver a first proof of concept for the involvement of quinone groups adjacent to N sites on the GO surface, for the selective oxidation of glycerol to dihydroxyacetone (DHA). Graphene oxide is covalently functionalized with 2,4-dihydroxypyridine (DHP), which resembles the identified active sites in the carbon clusters. As anticipated, the DHP-functionalized graphene oxide catalyst (DHP@GO) improved the conversion of glycerol to DHA, the main product, along with minor amounts of glyceric acid (GA) and fumaric acid (FA).
Efficiently selective oxidation of glycerol by BiQDs/BiOBr-Ov: promotion of molecular oxygen activation by Bi quantum dots and oxygen vacancies
Dong, Yuming,Fan, Mingming,Haryono, Agus,Jiang, Pingping,Leng, Yan,Li, Chenhao,Yue, Chengguang,Zhang, Pingbo
, p. 12938 - 12944 (2021/08/03)
Selective oxidation of biomass resource glycerol to produce high value-added formic acid, dihydroxyacetone and other fine chemicals is in line with the current development concept of green and sustainable chemistry. A Bi quantum dot and oxygen vacancy modified BiOBr photocatalyst was applied to the selective aerobic oxidation of glycerol. A series of characterization results showed that the introduction of Bi quantum dots and oxygen vacancies can promote the effective transfer of photo-generated electrons and the adsorption of molecular oxygen on the catalyst surface to promote the activation of molecular oxygen, thereby significantly improving the photocatalytic efficiency of BiOBr. BiQDs/BiOBr-Ovcan efficiently catalyze the oxidation of glycerol to yield FA and DHA (FA selectivity 46.2%, DHA selectivity 26.9% at 98.4% glycerol conversion) under mild conditions, which is around 2.9 times that of normal BiOBr. In addition, the relevant reaction mechanism and path were systematically studied: two reaction paths to yield FA and DHA independently were found, where photo-generated holes and superoxide radicals played important roles. This work provided an efficient catalyst modification scheme by promoting the activation of molecular oxygen to improve the photocatalytic oxidation efficiency of biomass resources.
The selective oxidation of glycerol over metal-free photocatalysts: insights into the solvent effect on catalytic efficiency and product distribution
Fan, Mingming,Haryonob, Agus,Jiang, Pingping,Leng, Yan,Yue, Chengguang,Zhang, Pingbo
, p. 3385 - 3392 (2021/06/06)
Selective oxidation of glycerol to high value-added derivatives is a promising biomass conversion pathway, but the related reaction mechanism, in particular the solvent effect, is rarely studied. In this work, O-doped g-C3N4was used as a metal-free catalyst to catalyze the selective oxidation of glycerol in different solvents. It was found that solvents can affect both catalytic efficiency and product distribution. A series of controlled experiments and theoretical calculation were applied to attest that the difference in interaction between glycerol and catalysts in different solvents is the main factor: competitive adsorption and hydrogen bond network from water inhibit the adsorption and activation of glycerol on the catalyst surface and reduce the conversion efficiency, while in acetonitrile, the stronger adsorption makes the oxidation reaction continue to yield esters. Two reaction routes in different solvents over O-doped g-C3N4are proposed for the first time, which is helpful for people to better understand the related reaction mechanism.