623-05-2Relevant articles and documents
Acute toxicity of benzoic acids to the crustacean Daphnia magna
Kamaya, Yasushi,Fukaya, Yuki,Suzuki, Kyoji
, p. 255 - 261 (2005)
The acute immobilization toxicity of benzoic acids substituted with hydroxyl and/or methoxyl groups on the aromatic ring was determined for the freshwater crustacean Daphnia magna under neutralized condition (initial pH: 7.45 ± 0.05). Toxicity, expressed as EC50 value, varied depending largely on the number and position of phenolic hydroxyl groups. Especially, benzoic acids with ortho-substituted hydroxyl groups were more toxic than benzoic acids with meta- and/or para-substituted hydroxyl groups. Whereas the limited data indicated that methoxyl substitution had relatively small and variable effects on the toxicity. Of the tested compounds, 2,4,6- trihydroxybenzoic acid showed the highest toxicity with the 48 h EC50 of 10 μmol l-1. This was 700 times as toxic as the parent benzoic acid (48 h EC50 = 7.0 mmol l-1) and about two orders of magnitude higher than those previously reported for monohalogenated benzoic acid derivatives in Daphnia. Within the subgroups based on the number of hydroxyl groups (NOH), the toxicity variations due to the position of hydroxyl groups appeared to be correlated with the logarithms of n-octanol/water partition coefficients (log Pow). The toxicity of benzoic acids existing almost entirely as their ionized forms could be expressed as simple structure-toxicity relationships using these two descriptors (NOH and log Pow).
-
Hutchinson
, (1891)
-
Determining Factors for the Product Para/Ortho Ratio and Reaction Rate in the Formation of (Hydroxymethyl)phenols from Phenol and Formaldehyde
Komiyama, Makoto
, p. 2079 - 2082 (1988)
Formations of 2- and 4-(hydroxymethyl)phenols from phenol and formaldehyde in aqueous alkaline solutions were kinetically investigated by the use of HPLC.The para/ortho ratio for the products sigmoidally increased with increasing concentration of sodium hydroxide, whereas the total yield of the (hydroxymethyl)phenols showed a steep maximum at the charged molar ratio unity of sodium hydroxide to phenol.Use of lithium hydroxide and potassium hydroxide, in place of sodium hydroxide, as alkaline catalysts results in almost the same para/ortho ratios.The addition of potassium chloride and magnesium sulfate decreased both the para/ortho ratio and the yield.These results indicate that the reactions proceed via an electrophilic attack of formaldehyde, which is free from the adduct formation with hydroxide ion, at phenolate ion.Electrostatic interactions between the phenoxide oxygen atom of the phenol and the incoming hydroxymethyl residues in the transition state exhibit a predominant role in the determination of the para/ortho ratio.
Ligand compound for copper catalyzed aryl halide coupling reaction, catalytic system and coupling reaction
-
Paragraph 0152-0159, (2021/05/29)
The invention provides a ligand compound capable of being used for copper catalyzed aryl halide coupling reaction, the ligand compound is a three-class compound containing a 2-(substituted or non-substituted) aminopyridine nitrogen-oxygen group, and the invention also provides a catalytic system for the aryl halide coupling reaction. Thecatalytic system comprises a copper catalyst, a compound containing a 2-(substituted or non-substituted) aminopyridine nitrogen-oxygen group adopted as a ligand, alkali and a solvent, and meanwhile, the invention also provides a system for the aryl halide coupling reaction adopting the catalyst system. The compound containing the 2-(substituted or non-substituted) aminopyridine nitrogen oxygen group can be used as the ligand for the copper catalyzed aryl chloride coupling reaction, and the ligand is stable under a strong alkaline condition and can well maintain catalytic activity when being used for the copper-catalyzed aryl chloride coupling reaction. In addition, the copper catalyst adopting the compound as the ligand can particularly effectively promote coupling of copper catalyzed aryl chloride and various nucleophilic reagents which are difficult to generate under conventional conditions, C-N, C-O and C-S bonds are generated, and numerous useful small molecule compounds are synthesized. Therefore, the aryl halide coupling reaction has a very good large-scale application prospect by adopting the copper catalysis system of the ligand.
Hydroboration Reaction and Mechanism of Carboxylic Acids using NaNH2(BH3)2, a Hydroboration Reagent with Reducing Capability between NaBH4and LiAlH4
Wang, Jin,Ju, Ming-Yue,Wang, Xinghua,Ma, Yan-Na,Wei, Donghui,Chen, Xuenian
, p. 5305 - 5316 (2021/04/12)
Hydroboration reactions of carboxylic acids using sodium aminodiboranate (NaNH2[BH3]2, NaADBH) to form primary alcohols were systematically investigated, and the reduction mechanism was elucidated experimentally and computationally. The transfer of hydride ions from B atoms to C atoms, the key step in the mechanism, was theoretically illustrated and supported by experimental results. The intermediates of NH2B2H5, PhCH= CHCOOBH2NH2BH3-, PhCH= CHCH2OBO, and the byproducts of BH4-, NH2BH2, and NH2BH3- were identified and characterized by 11B and 1H NMR. The reducing capacity of NaADBH was found between that of NaBH4 and LiAlH4. We have thus found that NaADBH is a promising reducing agent for hydroboration because of its stability and easy handling. These reactions exhibit excellent yields and good selectivity, therefore providing alternative synthetic approaches for the conversion of carboxylic acids to primary alcohols with a wide range of functional group tolerance.