3218-02-8Relevant articles and documents
Highly selective synthesis of primary amines from amide over Ru-Nb2O5 catalysts
Guo, Wanjun,Guo, Yong,Jia, Hongyan,Liu, Xiaohui,Pan, Hu,Wang, Yangang,Wang, Yanqin,Xia, Qineng
, (2021/12/22)
Amines are an important class of compounds in natural products and medicines. The universal availability of amides provides a potential way for the synthesis of amines. Herein, Ru/Nb2O5 catalyst is demonstrated to be highly efficient and stable for the selective hydrogenation of propionamide to propylamine (as a model reaction), with up to 91.4% yield of propylamine under relatively mild conditions. Results from XPS analyses, CO chemisorption, TEM images and DRIFTS spectra revealed that the unique properties of Nb2O5 can effectively activate the C=O group of amides, and the smaller Ru particles on Nb2O5 could further promote the activation, leading to superior catalytic performance of Ru/Nb2O5 for amide hydrogenation. Meanwhile, reducing the surface acidity of Nb2O5 can greatly inhibit the side reactions to by-products, and further enhance the selectivity to amine. Moreover, this catalytic system is also applicable for the hydrogenation of a variety of amides and provides high potential for the industrial production of primary amines from amides.
Zirconium-hydride-catalyzed site-selective hydroboration of amides for the synthesis of amines: Mechanism, scope, and application
Han, Bo,Jiao, Haijun,Wu, Lipeng,Zhang, Jiong
, p. 2059 - 2067 (2021/09/02)
Developing mild and efficient catalytic methods for the selective synthesis of amines is a longstanding research objective. In this respect, catalytic deoxygenative amide reduction has proven to be promising but challenging, as this approach necessitates selective C–O bond cleavage. Herein, we report the selective hydroboration of primary, secondary, and tertiary amides at room temperature catalyzed by an earth-abundant-metal catalyst, Zr-H, for accessing diverse amines. Various readily reducible functional groups, such as esters, alkynes, and alkenes, were well tolerated. Furthermore, the methodology was extended to the synthesis of bio- and drug-derived amines. Detailed mechanistic studies revealed a reaction pathway entailing aldehyde and amido complex formation via an unusual C–N bond cleavage-reformation process, followed by C–O bond cleavage.
Deoxygenative hydroboration of primary, secondary, and tertiary amides: Catalyst-free synthesis of various substituted amines
An, Duk Keun,Jaladi, Ashok Kumar,Kim, Hyun Tae,Yi, Jaeeun
, (2021/11/17)
Transformation of relatively less reactive functional groups under catalyst-free conditions is an interesting aspect and requires a typical protocol. Herein, we report the synthesis of various primary, secondary, and tertiary amines through hydroboration of amides using pinacolborane under catalyst-free and solvent-free conditions. The deoxygenative hydroboration of primary and secondary amides proceeded with excellent conversions. The comparatively less reactive tertiary amides were also converted to the corresponding N,N-diamines in moderate yields under catalyst-free conditions, although alcohols were obtained as a minor product.
Ceria supported Ru0-Ruδ+ clusters as efficient catalyst for arenes hydrogenation
Cao, Yanwei,Zheng, Huan,Zhu, Gangli,Wu, Haihong,He, Lin
supporting information, p. 770 - 774 (2020/08/24)
Selective hydrogenation of aromatic amines, especially chemicals such as aniline and bis(4-aminocyclohexyl)methane for non-yellowing polyurethane, is of particular interests due to the extensive applications. To conquer the existing difficulties in selective hydrogenation, the Ru0-Ruδ+/CeO2 catalyst with solid frustrated Lewis pairs was developed for aromatic amines hydrogenation with excellent activity and selectivity under relative milder conditions. The morphology, electronic and chemical properties, especially the Ru0-Ruδ+ clusters and reducible ceria were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electronic microscopy (SEM), X-ray photoelectron spectroscopy (XPS), CO2 temperature programmed desorption (CO2-TPD), H2 temperature programmed reduction (H2-TPR), H2 diffuse reflectance Fourier transform infrared spectroscopy (H2-DRIFT), Raman, etc. The 2% Ru/CeO2 catalyst exhibited good conversion of 95% and selectivity greater than 99% toward cyclohexylamine. The volcano curve describing the activity and Ru state was found. Owning to the “acidic site isolation” by surrounding alkaline sites, condensation between the neighboring amine molecules could be effectively suppressed. The catalyst also showed good stability and applicability for other aromatic amines and heteroarenes containing different functional groups.
Method for preparing primary amine by catalytically reducing nitrile compounds through nano-porous palladium catalyst
-
Paragraph 0097-0100, (2021/05/29)
The invention belongs to the technical field of heterogeneous catalysis, and provides a method for preparing primary amine by catalytically reducing nitrile compounds with a nano-porous palladium catalyst. According to the invention, aromatic and aliphatic nitrile compounds are adopted as raw materials, nano-porous palladium is adopted as a catalyst, ammonia borane is adopted as a hydrogen source, no additional additive is added, and selective hydrogenation is performed to prepare the corresponding primary amine. The method provided by the invention has the beneficial effects of mild reaction conditions, no additive, environmental protection, no need of hydrogen, simple operation, stable hydrogen source, safety, harmlessness, high conversion rate, high selectivity and good catalyst stability, and makes industrialization possible.
SUPPORTED HETEROGENEOUS CATALYST, PREPARATION AND USE THEREOF
-
Page/Page column 22, (2021/06/11)
A supported heterogeneous catalyst comprises rhodium and vanadium on a support, wherein the supported heterogeneous catalyst is preparable by depositing vanadium on a supported rhodium catalyst by impregnation. A process for preparing the aforementioned catalyst and a process for converting an amide into an amine in the presence of the aforementioned catalyst are provided.
Efficient hydrogenation of aliphatic amides to amines over vanadium-modified rhodium supported catalyst
Hernandez, Willinton Y.,Kusema, Bright T.,Pennetier, Alex,Streiff, Stéphane
, (2021/08/19)
This work presents a highly efficient catalytic hydrogenation system developed for the selective transformation of tertiary N,N-dimethyldodecanamide and secondary azepan-2-one amides to the corresponding amines. Industrial hydrogenation catalysts Pd/Al2O3, Pt/Al2O3 and Rh/Al2O3 were modified with vanadium (V) or molybdenum (Mo) species as oxophilic centres. The modified catalysts were prepared by deposition of V or Mo precursor on supported catalysts via impregnation method. The catalysts were characterized by ICP-OES, XRD, XPS, H2-TPR, FTIR, CO-chemisorption, TEM, SEM-EDX and TGA. Modified Rh-V/Al2O3 catalyst displayed the best performance affording high yield and selectivity >95 % to the desired tertiary and secondary amines at moderate reaction conditions of T H2 0 sites and oxophilic Vδ+ sites in the bimetallic Rh-V/Al2O3 catalyst were determined to be beneficial for the selective dissociation of C[dbnd]O bond of the carboxamides into the desired amines.
Method for preparing primary amine by catalyzing reductive amination of aldehyde ketone compounds
-
Paragraph 0027-0030; 0051-0055, (2020/05/30)
The invention discloses a method for preparing primary amine by catalyzing reductive amination of aldehyde ketone compounds. The method comprises the following steps: 1) mixing nickel nitrate hexahydrate, citric acid and an organic solvent, carrying out heating and stirring until a colloidal material is obtained, drying the colloidal material, roasting the colloidal material in a protective atmosphere, pickling, washing and drying a roasted product, and performing a partial oxidation reaction on a dried product in an oxygen-nitrogen mixed atmosphere to obtain a catalyst for a reductive amination reaction; and 2) mixing aldehyde or ketone compounds, a methanol solution of ammonia and the reductive amination reaction catalyst, introducing hydrogen, and carrying out a reductive amination reaction. The method has the advantages of high primary amine yield, high selectivity, wide aldehyde ketone substrate range, short reaction time, mild reaction conditions, low cost, greenness, economicalperformance and the like; the used reductive amination reaction catalyst can be recycled more than 10 times, and the catalytic activity of the catalyst is not obviously changed in gram-level reactions; and the method is suitable for large-scale application.
One-pot reductive amination of carboxylic acids: a sustainable method for primary amine synthesis
Coeck, Robin,De Vos, Dirk E.
supporting information, p. 5105 - 5114 (2020/08/25)
The reductive amination of carboxylic acids is a very green, efficient and sustainable method for the production of (bio-based) amines. However, with current technology, this reaction requires two to three reaction steps. Here, we report the first (heterogeneous) catalytic system for the one-pot reductive amination of carboxylic acids to amines, with solely H2 and NH3 as the reactants. This reaction can be performed with relatively cheap ruthenium-tungsten bimetallic catalysts in the green and benign solvent cyclopentyl methyl ether (CPME). Selectivities of up to 99% for the primary amine could be achieved at high conversions. Additionally, the catalyst is recyclable and tolerant for common impurities such as water and cations (e.g. sodium carboxylate).
Facile synthesis of controllable graphene-co-shelled reusable Ni/NiO nanoparticles and their application in the synthesis of amines under mild conditions
Cui, Zhibing,Liu, Jianguo,Liu, Qiying,Ma, Longlong,Singh, Thishana,Wang, Chenguang,Wang, Nan,Zhu, Yuting
supporting information, p. 7387 - 7397 (2020/11/19)
The primary objective of many researchers in chemical synthesis is the development of recyclable and easily accessible catalysts. These catalysts should preferably be made from Earth-abundant metals and have the ability to be utilised in the synthesis of pharmaceutically important compounds. Amines are classified as privileged compounds, and are used extensively in the fine and bulk chemical industries, as well as in pharmaceutical and materials research. In many laboratories and in industry, transition metal catalysed reductive amination of carbonyl compounds is performed using predominantly ammonia and H2. However, these reactions usually require precious metal-based catalysts or RANEY nickel, and require harsh reaction conditions and yield low selectivity for the desired products. Herein, we describe a simple and environmentally friendly method for the preparation of thin graphene spheres that encapsulate uniform Ni/NiO nanoalloy catalysts (Ni/NiO?C) using nickel citrate as the precursor. The resulting catalysts are stable and reusable and were successfully used for the synthesis of primary, secondary, tertiary, and N-methylamines (more than 62 examples). The reaction couples easily accessible carbonyl compounds (aldehydes and ketones) with ammonia, amines, and H2 under very mild industrially viable and scalable conditions (80 °C and 1 MPa H2 pressure, 4 h), offering cost-effective access to numerous functionalized, structurally diverse linear and branched benzylic, heterocyclic, and aliphatic amines including drugs and steroid derivatives. We have also demonstrated the scale-up of the heterogeneous amination protocol to gram-scale synthesis. Furthermore, the catalyst can be immobilized on a magnetic stirring bar and be conveniently recycled up to five times without any significant loss of catalytic activity and selectivity for the product.