579-07-7Relevant articles and documents
Catalyst-Free and Transition-Metal-Free Approach to 1,2-Diketones via Aerobic Alkyne Oxidation
Shen, Duyi,Wang, Hongyan,Zheng, Yanan,Zhu, Xinjing,Gong, Peiwei,Wang, Bin,You, Jinmao,Zhao, Yulei,Chao, Mianran
, p. 5354 - 5361 (2021/05/05)
A catalyst-free and transition-metal-free method for the synthesis of 1,2-diketones from aerobic alkyne oxidation was reported. The oxidation of various internal alkynes, especially more challenging aryl-alkyl acetylenes, proceeded smoothly with inexpensive, easily handled, and commercially available potassium persulfate and an ambient air balloon, achieving the corresponding 1,2-diketones with up to 85% yields. Meanwhile, mechanistic studies indicated a radical process, and the two oxygen atoms in the 1,2-diketons were most likely from persulfate salts and molecular oxygen, respectively, rather than water.
One-pot cascade synthesis of α-diketones from aldehydes and ketones in water by using a bifunctional iron nanocomposite catalyst
Song, Tao,Zhou, Xin,Wang, Xiaoxue,Xiao, Jianliang,Yang, Yong
supporting information, p. 1955 - 1959 (2021/03/26)
A new methodology for the synthesis of α-diketones was reportedviaa one-pot cascade process from aldehydes and ketones catalyzed by a bifunctional iron nanocomposite using H2O2as a green oxidant in water. The one-pot strategy showed excellent catalytic stability, comprehensive suitability of substrates and important practical utility for directly synthesizing biologically active and medicinally valuable N-heterocyclesviaan intermittent process.
Nature of the Nucleophilic Oxygenation Reagent Is Key to Acid-Free Gold-Catalyzed Conversion of Terminal and Internal Alkynes to 1,2-Dicarbonyls
Dubovtsev, Alexey Yu.,Shcherbakov, Nikolay V.,Dar'in, Dmitry V.,Kukushkin, Vadim Yu.
, p. 745 - 757 (2020/02/04)
2,3-Dichloropyridine N-oxide, a novel oxygen transfer reagent, allows the conductance of the gold(I)-catalyzed oxidation of alkynes to 1,2-dicarbonyls in the absence of any acid additives and under mild conditions to furnish the target species, including those derivatized by highly acid-sensitive groups. The developed strategy is effective for a wide range of alkyne substrates such as terminal- and internal alkynes, ynamides, alkynyl ethers/thioethers, and even unsubstituted acetylene (40 examples; yields up to 99%). The oxidation was successfully integrated into the trapping of reactive dicarbonyls by one-pot heterocyclization and into the synthesis of six-membered azaheterocycles. This synthetic acid-free route was also successfully applied for the total synthesis of a natural 1,2-diketone.
Ozonolysis of Alkynes - A Flexible Route to Alpha-Diketones: Synthesis of AI-2
Alterman, Joshua L.,Halverson, Larry J.,Kraus, George A.,Stroud, Marissa Roghair,Vang, Dua X.
supporting information, p. 7424 - 7426 (2020/10/05)
A mild procedure for the low-temperature conversion of alkynes to diketones has been developed and employed in the synthesis of AI-2.
Ancillary ligands switch the activity of Ru–NHC-based oxidation precatalysts
Gupta, Suraj K.,Mandal, Tanmoy,Gangber, Tejaswinee,Singh, Vivek,Choudhury, Joyanta
, (2019/10/28)
Herein we demonstrate how the inner-sphere coordinating ligands switch the activity of Ru–NHC-based oxidation precatalysts in the oxidative conversion of olefins to carbonyl compounds, with the help of a series of systematically varied imidazolydene-NHC (Im-NHC) and triazolydene-NHC (Tz-NHC)-based ruthenium(II)-complexes. It is shown that the catalytic activity of the para-cymene-containing precatalysts varies in the order of [(Tz-NHC)Ru(para-cymene)Cl]+ > [(Im-NHC)Ru(para-cymene)Cl]+, while the order of activity of the MeCN-containing precatalysts is found to be reversed, i.e., [(Im-NHC)Ru(MeCN)4]2+ > [(Tz-NHC)Ru(MeCN)4]2+. Along with the electronic influence of the NHC ligands, the effect of the lability of the para-cymene and MeCN ligands, and the overall charge of the complexes might be attributed toward such a switching of catalytic activity. This finding led to develop a new precatalyst with improved activity which was further utilized in selective oxidation of a series of styrene substrates containing other oxidation-sensitive functionalities.
Copper(I)-catalyzed aerobic oxidation of α-diazoesters
Xu, Changming,Bai, Lei,Wang, Yongchang
, p. 12579 - 12584 (2020/11/09)
A practical Cu-catalyzed oxidation of α-diazoesters to α-ketoesters using molecular oxygen as an oxidant has been developed. Both electron-poor and electron-rich aryl α-diazoesters are suitable substrates and provide the α-ketoesters in good yields. In this oxidative system, α-diazo-β-ketoesters are also compatible as substrates but unexpectedly furnish α-ketoesters via C-C bond cleavage, rather than the vicinal tricarbonyl products.
Direct Umpolung Morita–Baylis–Hillman like α-Functionalization of Enones via Enolonium Species
Arava, Shlomy,Kapanaiah, Raja,Pathe, Gulab K.,Santra, Sourav K.,Szpilman, Alex M.
supporting information, p. 15171 - 15175 (2020/07/04)
Herein we report on the umpolung of Morita–Baylis–Hillman type intermediates and application to the α-functionalization of enone C?H bonds. This reaction gives direct access to α-chloro-enones, 1,2-diketones and α-tosyloxy-enones. The latter are important intermediates for cross-coupling reaction and, to the best of our knowledge, cannot be made in a single step from enones in any other way. The proposed mechanism is supported by spectroscopic studies. The key initial step involves conjugate attack of an amine (DABCO or pyridine), likely assisted by hypervalent iodine acting as a Lewis acid leading to formation of an electrophilic β-ammonium-enolonium species. Nucleophilic attack by acetate, tosylate, or chloride anion is followed by base induced elimination of the ammonium species to give the noted products. Hydrolysis of α-acetoxy-enones lead to formation of 1,2-diketones. The α-tosyl-enones participate in Negishi coupling reactions under standard conditions.
Palladium-Catalyzed Synthesis of 1,2-Diketones from Aryl Halides and Organoaluminum Reagents Using tert-Butyl Isocyanide as the CO Source
Chen, Bo,Wu, Xiao-Feng
supporting information, p. 636 - 641 (2020/01/31)
In this work, an interesting and practical procedure for the synthesis of 1,2-diketones from aryl halides and organoaluminum reagents has been developed. Employing tert-butyl isocyanide as the CO source and palladium as the catalyst, the desired 1,2-diketones were isolated in good to excellent yields with good functional group tolerance. Concerning the reaction partners, besides aryl halides, both alkyl- A nd arylaluminum reagents were all suitable substrates here.
Bioinspired oxidation of oximes to nitric oxide with dioxygen by a nonheme iron(II) complex
Bhattacharya, Shrabanti,Lakshman, Triloke Ranjan,Sutradhar, Subhankar,Tiwari, Chandan Kumar,Paine, Tapan Kanti
, p. 3 - 11 (2019/11/11)
The ability of two iron(II) complexes, [(TpPh2)FeII(benzilate)] (1) and [(TpPh2)(FeII)2(NPP)3] (2) (TpPh2 = hydrotris(3,5-diphenylpyrazol-1-yl)borate, NPP-H = α-isonitrosopropiophenone), of a monoanionic facial N3 ligand in the O2-dependent oxidation of oximes is reported. The mononuclear complex 1 reacts with dioxygen to decarboxylate the iron-coordinated benzilate. The oximate-bridged dinuclear complex (2), which contains a high-spin (TpPh2)FeII unit and a low-spin iron(II)–oximate unit, activates dioxygen at the high-spin iron(II) center. Both the complexes exhibit the oxidative transformation of oximes to the corresponding carbonyl compounds with the incorporation of one oxygen atom from dioxygen. In the oxidation process, the oxime units are converted to nitric oxide (NO) or nitroxyl (HNO). The iron(II)–benzilate complex (1) reacts with oximes to afford HNO, whereas the iron(II)–oximate complex (2) generates NO. The results described here suggest that the oxidative transformation of oximes to NO/HNO follows different pathways depending upon the nature of co-ligand/reductant.
A Bifunctional Iron Nanocomposite Catalyst for Efficient Oxidation of Alkenes to Ketones and 1,2-Diketones
Ma, Zhiming,Ren, Peng,Song, Tao,Xiao, Jianliang,Yang, Yong,Yuan, Youzhu
, p. 4617 - 4629 (2020/05/19)
We herein report the fabrication of a bifunctional iron nanocomposite catalyst, in which two catalytically active sites of Fe-Nx and Fe phosphate, as oxidation and Lewis acid sites, were simultaneously integrated into a hierarchical N,P-dual doped porous carbon. As a bifunctional catalyst, it exhibited high efficiency for direct oxidative cleavage of alkenes into ketones or their oxidation into 1,2-diketones with a broad substrate scope and high functional group tolerance using TBHP as the oxidant in water under mild reaction conditions. Furthermore, it could be easily recovered for successive recycling without appreciable loss of activity. Mechanistic studies disclose that the direct oxidation of alkenes proceeds via the formation of an epoxide as intermediate followed by either acid-catalyzed Meinwald rearrangement to give ketones with one carbon shorter or nucleophilic ring-opening to generate 1,2-diketones in a cascade manner. This study not only opens up a fancy pathway in the rational design of Fe-N-C catalysts but also offers a simple and efficient method for accessing industrially important ketones and 1,2-diketones from alkenes in a cost-effective and environmentally benign fashion.