95-54-5 Usage
Chemical Description
o-Phenylenediamine is a chemical compound with the formula C6H4(NH2)2.
Chemical Description
o-Phenylenediamine is a diamine with primary amino groups.
Uses
Used in Dye and Pigment Industry:
o-Phenylenediamine is used as a key intermediate in the manufacture of various dyes and pigments, contributing to the production of a wide range of colored compounds for different applications.
Used in Hair Dye Formulations:
o-Phenylenediamine serves as an active ingredient in hair dye formulations, providing coloration and hair treatment benefits.
Used in Photographic Developing Agents:
o-Phenylenediamine is utilized as a photographic developing agent, playing a crucial role in the process of film development.
Used in Organic Synthesis:
o-Phenylenediamine is employed in organic synthesis for the production of various chemical compounds and intermediates.
Used in Fungicide Production:
o-Phenylenediamine is used as an intermediate in the manufacture of fungicides such as carbendazim, methyl thiophanate, and thiabendazole, helping to protect crops from fungal infections.
Used in Pesticide Intermediates:
o-Phenylenediamine is an important intermediate for the production of insecticides like quinalphos, contributing to pest control in agriculture.
Used in Pharmaceutical Preparation:
o-Phenylenediamine is actively involved in the preparation of pharmaceuticals by reacting with various diketones, leading to the development of new drugs.
Used in Sensitive Immunosensor for Cancer Biomarker:
o-Phenylenediamine has potential use in the development of sensitive immunosensors for detecting cancer biomarkers, aiding in early diagnosis and treatment.
Used in Environmental Monitoring:
o-Phenylenediamine is listed as an environmental toxin on the US EPA Toxic Release Inventory list (TRI), highlighting its importance in environmental monitoring and regulation.
Used in Chemical Raw Materials, Pesticides, and Dyes:
o-Phenylenediamine serves as an intermediate in the production of chemical raw materials, pesticides, and dyes, showcasing its versatility in the chemical industry.
Used in Polyamide and Polyurethane Manufacturing:
o-Phenylenediamine is utilized in the manufacture of polyamide and polyurethane, contributing to the production of various plastics and materials.
Used in Preparation of Developer, Surfactant, and Other Chemicals:
o-Phenylenediamine is employed in the preparation of developer, surfactant, and other chemicals, further expanding its applications in the chemical industry.
Phenylenediamine
Phenylenediamine is the simplest aromatic diamine. There are three isomers, namely o-phenylenediamine, m-phenylenediamine and p-phenylenediamine.
p-Phenylenediamine appears as a colorless crystal, being quickly oxidized in the air into black. It has a boiling point of 267 °C. It is soluble in water, ethanol and ether. It can be used as raw materials or intermediates of dyes, vulcanization accelerators for rubber, developers for the photographic industry, fur dyes and hair dyes. People in frequent contact include usually dyeing hair workers, hairdressers and regular hair coloring patients. It can enter the body through the skin, being oxidized intermediates with different degrees of sensitization, being able to cause eczema-like or moss-like dermatitis, appearing mostly in the face, neck and forearm and other skin folds. For example, mouth, eye and nose and other parts are easy to be damaged. People inhalation of its dust can obtain bronchial asthma. The symptoms of oral poisoning are similar as aniline poisoning, being mainly subject to symptomatic treatment.
O-phenylenediamine is also known as 1, 2-diaminobenzene, 1, 2-phenylenediamine. Substance precipitated from the water appears as white to pale yellow leaf-like crystals while product precipitated from chloroform appears as prism-like crystals. Its color is easy to change upon exposure to air, from white to yellow, brown, purple, and finally into black. It has a relative density of 1.2698, the melting point of 103 °C to 104 °C, the boiling point of 256~258 °C. It is slightly soluble in cold water (35 °C 4.15), being easily soluble in hot water (81 °C, 733), ethanol, ether, chloroform and benzene. Its reaction with inorganic acid can lead to the formation of water-soluble salts; its aqueous solution can react with carbon disulfide to generate 2-mercapto-benzimidazole; under pressure, it can react with carbon dioxide reaction to generate benzimidazolone. This product is toxic with inhalation causing visual disturbances. Its contact with the skin can cause inflammation with entering into the eyes being able to cause inflammation as well. Rat oral LD50: 1070mg/kg.
M-phenylenediamine appears as a rhombic crystal, being quickly oxidized to brown color in the air. Its proportion is 1.139 with the melting point of 62.8 °C and the boiling point of 284 °C. It can be dissolved in water, alcohols, and ketones and so on. It can be used in the dye chemical industry, and as a curing agent for plastics. It can also enter into the human body via the respiratory tract, skin and gastrointestinal tract. Acute poisoning can cause methemoglobinemia, and liver damage and hemolytic anemia.
Figure 1 is the chemical structure of three isomers of phenylenediamine: o-phenylenediamine, m-phenylenediamine, p-phenylenediamine.
The main purpose and role of phenylenediamine
Phenylenediamine is used as a fluorescent indicator and chromatographic analysis reagent. It is used for the identification of copper, gold, iron, magnesium, vanadium, ammonia, hydrogen sulfide, sulfur dioxide and chromic oxide, etc., and manufacturing azo dyes, fur dyeing and photographic materials. , Printing and dyeing industry.
(1) o-phenylenediamine is mainly used in the manufacture of pesticides fungicides (carbendazim, benomyl, thiophanate-methyl, Thiabendazole), reducing dyes (reduction Yellow 6GD, reduction brilliant orange GR), cationic dye (Cationic brilliant yellow 10GFF), polymer stabilizer (2-mercaptobenzimidazole), heterocyclic compounds (benzimidazole and quinoxaline), photographic materials, surfactants, antifreeze, copper anticorrosive. It is one of the components of the hair dye formulation and is one of the organic reagents commonly used in analytical chemistry to identify 1, 2-diesters, carboxylic acids and aldehydes.
(2) m-phenylenediamine is mainly used in the manufacture of dyes, such as direct fast black RN, and used as fur dyes, azo and diazine dye intermediates, the determination of nitrite, but also for ion exchange resins, block copolymer and photographic; for textile dyes, laboratory reagents, curing agents, corrosion inhibitors. Also used as a curing agent for epoxy resin and cement accelerator and so on.
(3) p-phenylenediamine is mainly used in the manufacture of dyes, being also used for the synthesis of azo dyes disperse dyes, acid dyes, direct dyes, sulfur dyes, fur dyes (fur D). It can also be used for cosmetics Hair dye, also used in the preparation of rubber antioxidant ("anti-aging agent DNP", "anti-aging agent DOP", "anti-aging agent DBP") and the production of developing agents.
Toxicity
O-phenylenediamine has moderate toxicity, often due to inhalation of dust or skin absorption caused by poisoning (the latter phenomenon mostly). Inhalation of dust can cause rhinitis, bronchitis, frequent fever, causing unique asthma and vagal nervous tension caused by the tracheal inflammation, can cause severe acute eczema and eczema. M-phenylenediamine can cause methemoglobin changes, while the p-phenylenediamine can cause bronchial asthma, allergic dermatitis.
The above information is edited and edited by lookchem.
Production method
Take o-nitroaniline as raw materials, use sodium sulfide reduction or catalytic hydrogenation for reduction of o-phenylenediamine. Addition of 21% sodium sulfide solution and o-nitroaniline into the reducing pot, raising the temperature to 90 °C, close and raise the temperature to 105-110 °C and increase the pressure to 0.1-0.2 MPa, stirring and reducing for 5 h, cooling to below 40 °C, filter. The filter cake is heated and melted, vacuum distillation, collecting the fraction in 140-210 °C (7.89kPa), namely o-phenylenediamine with the yield of 70-80%. The hydrogenation process should proceed in the autoclave with the reaction temperature of 95-105 °C with the pressure of about 2MPa. It should be subject to hydrogenation reaction under the action of nickel catalyst for about 1h until the hydrogen pressure does not decline. The yield of o-phenylenediamine was above 97%.
There are several preparation methods as follows.
O-Nitroaniline and Sodium Sulfide Reduction
Its reaction with o-nitroaniline and sodium sulfide solution at a pressure of 98 to 196 kPa and a reaction temperature of 105 to 110 ° C, being also carried out at a reaction temperature of 120 to 130 °C under atmospheric pressure for 3 to 4 hours to obtain o-benzenediamine amine.
O-nitroaniline: hydrogenation reduction method
Use o-nitroaniline as the raw material and Raney nickel as the catalyst, the reaction temperature was raised from 95 to 105 ° C in the autoclave, and the product was obtained by stirring at 1.960 MPa under continuous pressure of hydrogen gas until the pressure did not drop.
For the above two preparation methods, the sodium sulfide reduction method can obtain the product of high purity with relative mature process. There are more factories in the domestic production of o-phenylenediamine. But the method has poor labor protection conditions with much wastewater. There are still some problems in the catalytic hydrogenation with industrialization needs to be further improved. In addition, there is also o-dichlorobenzene ammonia solution, there are more units have been studied, but not yet industrialized.
Hazards & Safety Information
Category Toxic substances
Toxicity classification highly toxic
Acute toxicity Oral-Rat LD50: 1070 mg/kg; Oral-mouse LD50: 366 mg/kg
Flammability hazardous characteristics it is flammable with heating releasing toxic aniline gases
Storage and transportation characteristics Treasury: ventilated, low-temperature and dry; store it separately from food raw materials for storage and transportation
Fire extinguishing agent mist water, carbon dioxide, sand
Synthesis Reference(s)
Organic Syntheses, Coll. Vol. 2, p. 501, 1943Synthetic Communications, 25, p. 4025, 1995 DOI: 10.1080/00397919508011478
Air & Water Reactions
Soluble in water [Hawley]. Melting point 219 F. Flash point 277 F. Toxic by skin absorption, inhalation or ingestion. Even as a solid will spot downwind area brown/purple (Roger Patrick, DuPont Engineer).
Reactivity Profile
o-Phenylenediamine a weak aromatic amine base neutralizes acids in exothermic reactions to form salts. May be incompatible with isocyanates, halogenated organics, peroxides, phenols (acidic), epoxides, anhydrides, and acid halides. Darkens on exposure to air (Roger Patrick, DuPont Engineer).
Health Hazard
The toxic effects of m-phenylenediamineare similar to its ortho- and para-isomers.The toxic symptoms were tremor, excite ment, convulsions, and cyanosis, and col lapse at fatal dose. Other symptoms includeddecreased blood pressure and pulse rate.Chronic toxic effects resulting from the oralapplication of an aqueous solution of thiscompound were increase in liver and to alesser extent, kidney weights. No carcinogenicity was observed in test animals. Thecompound was excreted rapidly, unchanged.LD50 value, oral (rats): 650 mg/kg.
Fire Hazard
Flash point data for o-Phenylenediamine are not available. o-Phenylenediamine is probably combustible.
Biochem/physiol Actions
o-Phenylenediamine (o-PD) is a potent substrate for spectrophotometric horseradish peroxidase (HRP)-mediated enzyme-linked immunosorbent assay (ELISA), which gives 2,3-diaminophenazine (DAP) as a product of o-PD oxidation.
Safety Profile
Confirmed carcinogen. Poison by ingestion and intraperitoneal routes. Moderately toxic by subcutaneous route. Mildly toxic by skin contact. Mutation data reported. A pesticide and pharmaceutical. When heated to decomposition it emits toxic fumes of NOx. See also other phenylenediamine entries and AMINES
Potential Exposure
Used as an intermediate in the making of dyes; pesticides, pharmaceuticals, and rubber chemicals; in making fungicides and other chemicals; in photographic and analytical procedures and processes
Carcinogenicity
o-PDA (dihydrochloride) induced hepatocellular carcinomas
during an 18-month feeding study in male Charles River
CD rats given diets containing 2000 or 4000 ppm of the
chemical (female rats not used in this study). No significant
carcinogenic effects were observed in male and female CD-1
mice given higher doses (6872 or 13,743 ppm) of the
compound.
Purification Methods
Crystallise the diamine from aqueous 1% sodium hydrosulfite (charcoal), wash it with ice-water and dry it in a vacuum desiccator, or sublime it in vacuo. It has been purified by recrystallisation from toluene and zone refined [Anson et al. J Am Chem Soc 108 6593 1986]. Purification by refluxing a CH2Cl2 solution containing charcoal is also carried out followed by evaporation and recrystallisation [Koola & Kochi J Org Chem 52 4545 1987], protect from light. The acetate has m 186o. [Beilstein 13 IV 38.]
Incompatibilities
Dust may form explosive mixture with air. Incompatible with oxidizers (chlorates, nitrates, peroxides, permanganates, perchlorates, chlorine, bromine, fluorine, etc.); contact may cause fires or explosions. Keep away from alkaline materials, strong bases, strong acids, oxoacids, epoxides, acid chlorides; acid anhydrides; chloroformates. Heat and light contribute to instability. Keep away from metals; 1,2-PHENYLENEDIAMINE a weak aromatic amine base neutralizes acids in exothermic reactions to form salts. May be incompatible with isocyanates, halogenated organics, peroxides, phenols (acidic), epoxides, anhydrides, and acid halides. Darkens on exposure to air (Roger Patrick, DuPont Engineer).
Check Digit Verification of cas no
The CAS Registry Mumber 95-54-5 includes 5 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 2 digits, 9 and 5 respectively; the second part has 2 digits, 5 and 4 respectively.
Calculate Digit Verification of CAS Registry Number 95-54:
(4*9)+(3*5)+(2*5)+(1*4)=65
65 % 10 = 5
So 95-54-5 is a valid CAS Registry Number.
InChI:InChI:1S/C6H8N2/c7-5-3-1-2-4-6(5)8/h1-4H,7-8H2
95-54-5Relevant articles and documents
Catalytic effect of alloxazinium and isoalloxazinium salts on oxidation of sulfides with hydrogen peroxide in micellar media
Cibulka, Radek,Baxova, Lenka,Dvorakova, Hana,Hampl, Frantisek,Menova, Petra,Mojr, Viktor,Plancq, Baptiste,Serkan, Sayin
, p. 973 - 993 (2009)
Three novel amphiphilic alloxazinium salts were prepared: 3-dodecyl-5-ethyl-7,8,10-trimethylisoalloxazinium perchlorate (1c), 1-dodecyl-5-ethyl-3-methylalloxazinium perchlorate (2b), and 3-dodecyl-5-ethyl-l-methylalloxazinium perchlorate (2c). Their catalytic activity in thioanisole (3) oxidation with hydrogen peroxide was investigated in micelles of sodium dodecylsulfate (SDS), hexadecyltrimethylammonium nitrate (CTANO3) and Brij 35. Reaction rates were strongly dependent on the catalyst structure, on the type of micelles, and on pH value. Alloxazinium salts 2 were more effective catalysts than isoalloxazinium salts 1. Due to the contribution of micellar catalysis, the vcat/vo ratio of the catalyzed and non-catalyzed reaction rates was almost 80 with salt 2b solubilized in CTANO3 micelles. Nevertheless, the highest acceleration was observed with non-amphiphilic 5-ethyl-1,3-dimethylalloxazinium perchlorate (2a) in CTANO3 micelles (vcat/vo = 134). In this case, salt 2a presumably acts as a phase-transfer catalyst bringing hydrogen peroxide from the aqueous phase into the micelle interior. Synthetic applicability of the investigated catalytic systems was verified on semipreparative scale.
Conjugated, rigidified bibenzimidazole ancillary ligands for enhanced photoluminescence quantum yields of orange/red-emitting iridium(iii) complexes
Henwood, Adam F.,Antón-García, Daniel,Morin, Mégane,Rota Martir, Diego,Cordes, David B.,Casey, Colin,Slawin, Alexandra M. Z.,Lebl, Tomas,Bühl, Michael,Zysman-Colman, Eli
, p. 9639 - 9653 (2019)
A series of six novel [Ir(C^N)2(N^N)](PF6) complexes (C^N is one of two cyclometalating ligands: 2-phenyl-4-(2,4,6-trimethylphenyl)pyridine, MesppyH, or 2-(napthalen-1-yl)-4-(2,4,6-trimethylphenyl)pyridine, MesnpyH; N^N denotes one o
Organoselenium ligand-stabilized copper nanoparticles: Development of a magnetically separable catalytic system for efficient, room temperature and aqueous phase reduction of nitroarenes
Arora, Aayushi,Oswal, Preeti,Singh, Siddhant,Nautiyal, Divyanshu,Rao, Gyandshwar K.,Kumar, Sushil,Singh, Ajai K.,Kumar, Arun
, (2021)
Herein, we report the synthesis of a novel selenoether ligand L1 (pyren-1-yl-CH2-NH-CH2-CH2-SePh) and the first example of organoselenium compound stabilized-copper nanoparticles (NPs) with long term stability. Such stabil
Nickel Boride Catalyzed Reductions of Nitro Compounds and Azides: Nanocellulose-Supported Catalysts in Tandem Reactions
Proietti, Giampiero,Prathap, Kaniraj Jeya,Ye, Xinchen,Olsson, Richard T.,Dinér, Peter
, p. 133 - 146 (2021/11/04)
Nickel boride catalyst prepared in situ from NiCl2 and sodium borohydride allowed, in the presence of an aqueous solution of TEMPO-oxidized nanocellulose (0.01 wt%), the reduction of a wide range of nitroarenes and aliphatic nitro compounds. Here we describe how the modified nanocellulose has a stabilizing effect on the catalyst that enables low loading of the nickel salt pre-catalyst. Ni-B prepared in situ from a methanolic solution was also used to develop a greener and facile reduction of organic azides, offering a substantially lowered catalyst loading with respect to reported methods in the literature. Both aromatic and aliphatic azides were reduced, and the protocol is compatible with a one-pot Boc-protection of the obtained amine yielding the corresponding carbamates. Finally, bacterial crystalline nanocellulose was chosen as a support for the Ni-B catalyst to allow an easy recovery step of the catalyst and its recyclability for new reduction cycles.
CURABLE COMPOSITION, CURED PRODUCT, OPTICAL MEMBER, LENS, AND METHOD FOR MANUFACTURING OPTICAL MEMBER
-
, (2022/01/08)
A curable composition containing a compound represented by General Formula A and a salt of an acidic phosphoric acid ester is provided as a curable composition for forming a cured product that has a small Abbe number and a large partial dispersion ratio and has excellent moldability. In General Formula A, Ar represents an n-valent group containing a nitrogen-containing aromatic ring as a partial structure, L represents a linking group such as —O— and —C(═O)O—, Sp represents a single bond or a divalent linking group, Pol represents a hydrogen atom or a polymerizable group, and n represents 1 or 2; and the compound represented by General Formula A has at least one polymerizable group.
Regioselective Radical Arene Amination for the Concise Synthesis ofortho-Phenylenediamines
Gillespie, James E.,Morrill, Charlotte,Phipps, Robert J.
supporting information, p. 9355 - 9360 (2021/07/19)
The formation of arene C-N bonds directly from C-H bonds is of great importance and there has been rapid recent development of methods for achieving this through radical mechanisms, often involving reactiveN-centered radicals. A major challenge associated with these advances is that of regiocontrol, with mixtures of regioisomeric products obtained in most protocols, limiting broader utility. We have designed a system that utilizes attractive noncovalent interactions between an anionic substrate and an incoming radical cation in order to guide the latter to the areneorthoposition. The anionic substrate takes the form of a sulfamate-protected aniline and telescoped cleavage of the sulfamate group after amination leads directly toortho-phenylenediamines, key building blocks for a range of medicinally relevant diazoles. Our method can deliver both free amines and monoalkyl amines allowing access to unsymmetrical, selectively monoalkylated benzimidazoles and benzotriazoles. As well as providing concise access to valuableortho-phenylenediamines, this work demonstrates the potential for utilizing noncovalent interactions to control positional selectivity in radical reactions.
Sustainable photocatalytic synthesis of benzimidazoles
Montini, Tiziano,Gombac, Valentina,Delgado, Juan J.,Venezia, Anna Maria,Adami, Gianpiero,Fornasiero, Paolo
, (2021/03/14)
Among the 17 Sustainable Development Goals presented by the United Nations in 2015, great attention is devoted to the production of goods and chemicals by use of renewable raw materials, by recycling of products and by extensive use of renewable energy sources. In this context, photocatalysis attracted great attention for the possibility to exploit Solar light to promote the desired chemical reactions. Besides its use in degradation of pollutants and in the production of fuels, some efforts have been devoted in the development of photocatalytic processes for the synthesis of fine chemicals with high added-value. In this work, we investigated the sustainable photocatalytic synthesis of benzimidazole derivatives through a one-pot, tandem process starting from a nitro compound and ethanol. By a photocatalytic approach, ethanol is dehydrogenated producing the hydrogen required for reduction of nitro groups and the aldehyde required for cyclization and production of the benzimidazole unit. Co-doping of TiO2 with B and N is beneficial to increase the photocatalytic activity in H2 production from ethanol. The effect of various metal co-catalysts (Pt, Pd Ag, Cu) have been evaluated on H2 production rate and on selectivity in the synthesis of substituted benzimidazoles: Pt showed the highest selectivity in the desired products while Pd demonstrated a great activity for hydrodehalogenation, with potential interest for degradation of persistent pollutants.
UiO-66/btb/Pd as a stable catalyst reduction of 4-nitrophenol into 4-aminophenol
Kiani, Zahra,Zhiani, Rahele,Khosroyar, Susan,Motavalizadehkakhky, Alireza,Hosseiny, Malihesadat
, (2020/12/21)
In order to synthesize highly sparse nanoparticles, UiO-66-NH2 can be utilized as an appropriate support. It has great surface area, which is functionalized by 1,3-bis(dimethylthiocarbamoyloxy)benzene compounds that can act as the powerful performers, hence, the Pd (II) is a complex without aggregate over the UiO-66-NH2 microspheres structures (UiO-66/btb/Pd). Nitro-aromatic pollution in industrial waste streams threat wellbeing of water resources. The produced UiO-66/btb/Pd nanocatalyst showed appropriate catalytic activity for reduce nitro-aromatic compounds in aqueous solution. XRD, EDS, SEM, FT-IR, and TEM were utilized for characterizing the nanostructures UiO-66/btb/Pd.
Development of sustainable and efficient nanocatalyst based on polyoxometalate/nickel oxide nanocomposite: A simple and recyclable catalyst for reduction of nitroaromatic compounds
Kurbah, Sunshine Dominic
, p. 1487 - 1495 (2021/04/22)
In this paper, we report the synthesis and characterization of NiO@PolyMo nanocomposite. The newly synthesized nanocomposite was characterized by transmission electronmicroscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), and powder X-ray diffraction (XRD). The particle sizes of the NiO@PolyMo nanocatalyst are in the range of 10–20 nm. Powder XRD patterns show that the phase of NiO@PolyMo remains unaltered even after the functionalization of NiO. The lattice fringes of d = 0.20 nm were observed, which correspond to the (111) plane of NiO phase. The newly synthesized material shows excellent catalytic performance and good selectivity for reduction of nitroarenes. The advantages of the present protocols are mild, and can be carried out using water as a solvent, which is an eco-friendly benign.
Magnetically‐recoverable Schiff base complex of Pd(II) immobilized on Fe3O4@SiO2 nanoparticles: an efficient catalyst for the reduction of aromatic nitro compounds to aniline derivatives
Azadi, Sedigheh,Esmaeilpour, Mohsen,Sardarian, Ali Reza
, p. 809 - 821 (2021/07/20)
Fe3O4@SiO2/Schiff base/Pd(II) is reported as a magnetically recoverable heterogeneous catalyst for the chemoselective reduction of aromatic nitro compounds to the corresponding amines through catalytic transfer hydrogenation (CTH). In this regard, a small amount of the nanocatalyst (0.52?mol% Pd) and hydrazine hydrate, showing safe characteristics and perfect ability as the hydrogen donor, were added to the nitro substrates. The experiments described the successful reduction of aromatic nitro compounds with good to excellent yields and short reaction times. The catalyst, due to its magnetic property, could be simply separated from the reaction mixture by a permanent magnet and reused in seven consecutive reactions without considerable loss in its activity. Moreover, the leaching of Pd was only 3.6% after the seventh run. Thus, the most striking feature of this method is to use a small amount of the magnetic nanocatalyst along with a cheap and safe hydrogen source to produce the important amine substances selectively, which makes the method economical, cheap, environmentally friendly, and simple. Graphic abstract: [Figure not available: see fulltext.]