98-16-8Relevant articles and documents
Hydroboration reduction reaction of aromatic nitro compounds without transition metal catalysis
-
Paragraph 0006; 0025-0028, (2021/07/31)
The invention relates to a hydroboration reduction reaction of aromatic nitro compounds without transition metal catalysis. According to the method, triethyl boron and potassium tert-butoxide are used as catalysts for the first time, and an aromatic nitro compound and pinacol borane which is low in price and easy to obtain can be conveniently catalyzed to be subjected to a hydroboration reduction reaction under mild conditions to prepare aromatic amine products. Compared with a traditional method, the method generally has the advantages that the catalyst is cheap and easy to obtain, operation is convenient, and reaction is safe. The selective hydroboration reduction reaction of the non-transition metal reagent catalyzed aromatic nitro compound and pinacol borane is realized for the first time, and a practical new reaction strategy is provided for laboratory preparation or industrial production of aromatic amine products.
Chemoselective Hydrogenation of Nitroarenes Using an Air-Stable Base-Metal Catalyst
Zubar, Viktoriia,Dewanji, Abhishek,Rueping, Magnus
supporting information, p. 2742 - 2747 (2021/05/05)
The reduction of nitroarenes to anilines as well as azobenzenes to hydrazobenzenes using a single base-metal catalyst is reported. The hydrogenation reactions are performed with an air-and moisture-stable manganese catalyst and proceed under relatively mild reaction conditions. The transformation tolerates a broad range of functional groups, affording aniline derivatives and hydrazobenzenes in high yields. Mechanistic studies suggest that the reaction proceeds via a bifunctional activation involving metal-ligand cooperative catalysis.
A Concise Route to Cyclic Amines from Nitroarenes and Ketoacids under Iron-Catalyzed Hydrosilylation Conditions
Ammaiyappan, Yuvaraj,Darcel, Christophe,Tongdee, Satawat,Wu, Jiajun
, p. 3859 - 3865 (2021/07/12)
Starting from nitroarenes, under hydrosilylation conditions, using a well-defined N-heterocyclic carbene iron(0) catalyst, (IMes)Fe(CO)4, the corresponding aniline derivatives were produced in 61–92% isolated yields. More impressively, a selective synthesis of cyclic amines such as pyrrolidines, piperidines and azepanes were conducted from levulinic acid, 1,5- and 1,6-keto acids, respectively. The sequential procedure proceeded under both visible light irradiation and thermal conditions with 20 examples in isolated yields up to 69%. (Figure presented.).
Efficient hydrogenation catalyst designing via preferential adsorption sites construction towards active copper
Dai, Xingchao,He, Dongcheng,Li, Teng,Shi, Feng,Wang, Hongli,Wang, Tao,Wang, Xinzhi
, p. 397 - 406 (2021/07/21)
Based on the experimental and DFT calculation results, here for the first time we built preferential adsorption sites for nitroarenes by modification of the supported Cu catalysts surface with 1,10-phenathroline (1,10-phen), by which the yield of aniline via reduction of nitroarene is enhanced three times. Moreover, a macromolecular layer was in-situ generated on supported Cu catalysts to form a stable macromolecule modified supported Cu catalyst, i.e., CuAlOx-M. By applying the CuAlOx-M, a wide variety of nitroarene substrates react smoothly to afford the desired products in up to > 99% yield with > 99% selectivity. The method tolerates a variety of functional groups, including halides, ketone, amide, and C = C bond moieties. The excellent catalytic performance of the CuAlOx-M can be attributed to that the 1,10-phen modification benefits the preferential adsorption of nitrobenzene and slightly weakens adsorption of aniline on the supported nano-Cu surface.
Cu-Catalyzed Cross-Coupling of Nitroarenes with Aryl Boronic Acids to Construct Diarylamines
Guan, Xinyu,Zhu, Haoran,Driver, Tom G.
, p. 12417 - 12422 (2021/10/12)
The development and study of a simple copper-catalyzed reaction of nitroarenes with aryl boronic acids to form diarylamines that uses phenyl silane as the stoichiometric terminal reductant is described. This cross-coupling reaction requires as little as 2 mol % of CuX and 4 mol % of diphosphine for success and tolerates a broad range of functional groups on either the nitroarene or the aryl boronic acid to afford the amine in good yield. Mechanistic investigations established that the cross-coupling reaction proceeds via a nitrosoarene intermediate and that copper is required to catalyze both the deoxygenation of the nitroarene to afford the nitrosoarene and C-NAr bond formation of the nitrosoarene with the aryl boronic acid.
Unlocking Amides through Selective C–N Bond Cleavage: Allyl Bromide-Mediated Divergent Synthesis of Nitrogen-Containing Functional Groups
Govindan, Karthick,Chen, Nian-Qi,Chuang, Yu-Wei,Lin, Wei-Yu
supporting information, p. 9419 - 9424 (2021/11/30)
We report a new set of reactions based on the unlocking of amides through simple treatment with allyl bromide, creating a common platform for accessing a diverse range of nitrogen-containing functional groups such as primary amides, sulfonamides, primary amines, N-acyl compounds (esters, thioesters, amides), and N-sulfonyl esters. The method has potential industrial applicability, as demonstrated through gram-scale syntheses in batch and in a continuous flow system.
Discovery and characterization of an acridine radical photoreductant
MacKenzie, Ian A.,Wang, Leifeng,Onuska, Nicholas P. R.,Williams, Olivia F.,Begam, Khadiza,Moran, Andrew M.,Dunietz, Barry D.,Nicewicz, David A.
, p. 76 - 80 (2020/04/17)
Photoinduced electron transfer (PET) is a phenomenon whereby the absorption of light by a chemical species provides an energetic driving force for an electron-transfer reaction1–4. This mechanism is relevant in many areas of chemistry, including the study of natural and artificial photosynthesis, photovoltaics and photosensitive materials. In recent years, research in the area of photoredox catalysis has enabled the use of PET for the catalytic generation of both neutral and charged organic free-radical species. These technologies have enabled previously inaccessible chemical transformations and have been widely used in both academic and industrial settings. Such reactions are often catalysed by visible-light-absorbing organic molecules or transition-metal complexes of ruthenium, iridium, chromium or copper5,6. Although various closed-shell organic molecules have been shown to behave as competent electron-transfer catalysts in photoredox reactions, there are only limited reports of PET reactions involving neutral organic radicals as excited-state donors or acceptors. This is unsurprising because the lifetimes of doublet excited states of neutral organic radicals are typically several orders of magnitude shorter than the singlet lifetimes of known transition-metal photoredox catalysts7–11. Here we document the discovery, characterization and reactivity of a neutral acridine radical with a maximum excited-state oxidation potential of ?3.36 volts versus a saturated calomel electrode, which is similarly reducing to elemental lithium, making this radical one of the most potent chemical reductants reported12. Spectroscopic, computational and chemical studies indicate that the formation of a twisted intramolecular charge-transfer species enables the population of higher-energy doublet excited states, leading to the observed potent photoreducing behaviour. We demonstrate that this catalytically generated PET catalyst facilitates several chemical reactions that typically require alkali metal reductants and can be used in other organic transformations that require dissolving metal reductants.
EffectiveN-methylation of nitroarenes with methanol catalyzed by a functionalized NHC-based iridium catalyst: a green approach toN-methyl amines
González-Lainez, Miguel,Jiménez, M. Victoria,Passarelli, Vincenzo,Pérez-Torrente, Jesús J.
, p. 3458 - 3467 (2020/06/17)
Compound [IrBr(CO)2(κC-tBuImCH2PyCH2OMe)] featuring a flexible pyridine/OMe functionalized NHC ligand κ1C coordinated efficiently catalyzes the selectiveN-monomethylation of nitroarenes using methanol as both the reducing agent and the C1 source. A range of functionalized nitroarenes including heterocyclic or sterically hindered derivatives have been efficiently converted to the correspondingN-monomethyl amines in good yields at low catalyst loadings using sub-stoichiometric amounts of Cs2CO3as a base. Mechanistic investigations support a borrowing-hydrogen mechanism in which methanol acts as the hydrogen source and methylating agent. Further, the hydrogen transfer reduction of nitrobenzene to aniline under optimized reaction conditions should proceed through a direct mechanism involving nitrosobenzene andN-phenylhydroxylamine intermediates.
One-Pot Generation of Benzynes from Phenols: Formation of Primary Anilines by the Deoxyamination of Phenols
Akai, Shuji,Ikawa, Takashi,Masuda, Shigeaki
, (2020/03/23)
Benzynes were selectively generated in situ from phenols and trapped regioselectively with potassium hexamethyldisilazide to form primary anilines following acidic workup. The direct conversion of a phenolic hydroxyl group into a free amino group is a useful method for the preparation of primary aryl amines that are hard to synthesize by using coupling reactions involving phenol derivatives with ammonia. Whereas reactions of ortho- and meta-substituted phenols produced meta-substituted anilines exclusively, those of para-substituted phenols provided ortho-silylanilines.
Palladium Supported on Carbon Nanoglobules as a Promising Catalyst for Selective Hydrogenation of Nitroarenes
Mironenko,Belskaya,Stepanova,Gulyaeva,Trenikhin,Likholobov
, p. 888 - 900 (2019/11/11)
The catalysts 1?wt% palladium supported on carbon nanoglobules (CNGs) were shown to be highly active in the liquid-phase hydrogenation of various nitroarenes and provided nearly 100% selectivity to aromatic amines at complete conversion under mild conditions (323?K, 0.5?MPa, 1?h). The catalytic activity (in terms of turnover frequency and substrate conversion) and selectivity depend on the kind of CNGs support, catalyst preparation method and the reaction conditions (solvent nature). The Pd/CNGs catalyst can be repeatedly used while maintaining the same catalytic performance. The excellent performances of Pd/CNGs catalysts can be due to the globular morphology of the supports as well as the absence of micropores and pronounced surface defects. Graphic Abstract: [Figure not available: see fulltext.]