542-28-9Relevant articles and documents
Dual utility of a single diphosphine-ruthenium complex: A precursor for new complexes and, a pre-catalyst for transfer-hydrogenation and Oppenauer oxidation
Mukherjee, Aparajita,Bhattacharya, Samaresh
, p. 15617 - 15631 (2021/05/19)
The diphosphine-ruthenium complex, [Ru(dppbz)(CO)2Cl2] (dppbz = 1,2-bis(diphenylphosphino)benzene), where the two carbonyls are mutually cis and the two chlorides are trans, has been found to serve as an efficient precursor for the synthesis of new complexes. In [Ru(dppbz)(CO)2Cl2] one of the two carbonyls undergoes facile displacement by neutral monodentate ligands (L) to afford complexes of the type [Ru(dppbz)(CO)(L)Cl2] (L = acetonitrile, 4-picoline and dimethyl sulfoxide). Both the carbonyls in [Ru(dppbz)(CO)2Cl2] are displaced on reaction with another equivalent of dppbz to afford [Ru(dppbz)2Cl2]. The two carbonyls and the two chlorides in [Ru(dppbz)(CO)2Cl2] could be displaced together by chelating mono-anionic bidentate ligands, viz. anions derived from 8-hydroxyquinoline (Hq) and 2-picolinic acid (Hpic) via loss of a proton, to afford the mixed-tris complexes [Ru(dppbz)(q)2] and [Ru(dppbz)(pic)2], respectively. The molecular structures of four selected complexes, viz. [Ru(dppbz)(CO)(dmso)Cl2], [Ru(dppbz)2Cl2], [Ru(dppbz)(q)2] and [Ru(dppbz)(pic)2], have been determined by X-ray crystallography. In dichloromethane solution, all the complexes show intense absorptions in the visible and ultraviolet regions. Cyclic voltammetry on the complexes shows redox responses within 0.71 to -1.24 V vs. SCE. [Ru(dppbz)(CO)2Cl2] has been found to serve as an excellent pre-catalyst for catalytic transfer-hydrogenation and Oppenauer oxidation.
Acceptorless Dehydrogenative Cross-Coupling of Primary Alcohols Catalyzed by an N-Heterocyclic Carbene-Nitrogen-Phosphine Chelated Ruthenium(II) Complex
Chen, Hua,Cui, Tianhua,Fu, Haiyan,He, Xiaochun,Jiang, Weidong,Li, Ruixiang,Nie, Xufeng,Xu, Jiaqi,Yuan, Maolin,Zhao, Ling,Zheng, Xueli
, (2022/04/07)
The acceptorless dehydrogenative cross-coupling of primary alcohols to form cross-esters with the liberation of H2 gas was enabled using a [RuCl(η6-C6H6)(κ2-CNP)][PF6]Cl complex as the catalyst. This sustainable protocol is applicable to a broad range of primary alcohols, particularly for the sterically demanding ones, featuring good functional group tolerance and high selectivity. The good catalytic performance can be attributed to the nitrogen-phosphine-functionalized N-heterocyclic carbene (CNP) ligand, which adopts a facial coordination mode as well as the facile dissociation of coordinated benzene.
Selective Aerobic Oxidation of Secondary C (sp3)-H Bonds with NHPI/CAN Catalytic System
Wang, Lingyao,Zhang, Yuanbin,Yuan, Haoran,Du, Renfeng,Yao, Jia,Li, Haoran
, p. 1663 - 1669 (2020/10/21)
Abstract: The direct aerobic oxidation of secondarty C(sp3)-H bonds was achieved in the presence of N-hydroxyphthalimide (NHPI) and cerium ammonium nitrate (CAN) under mild conditions. Various benzylic methylenes could be oxidized to carbonyl compounds in satisfied selectivity while saturated cyclic alkanes could be further oxidized to the corresponding lactones with the catalytic system. Remarkably, 25% of isochroman was converted to corresponding ketone with a selectivity of 96%. The reaction was initiated by hydrogen atom abstraction from NHPI by cerium and nitrates under oxygen atmosphere to form PINO radicals. 2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO) addition experiments showed that the oxidation proceeded via a complex radical chain mechanism and an ion pathway. Graphic Abstract: [Figure not available: see fulltext.]
Lipase catalysed oxidations in a sugar-derived natural deep eutectic solvent
Vagnoni, Martina,Samorì, Chiara,Pirini, Daniele,Vasquez De Paz, Maria Katrina,Gidey, Dawit Gebremichael,Galletti, Paola
, (2021/05/06)
Chemoenzymatic oxidations involving the CAL-B/H2O2 system was developed in a sugar derived Natural Deep Eutectic Solvent (NaDES) composed by a mixture of glucose, fructose and sucrose. Good to excellent conversions of substrates like cyclooctene, limonene, oleic acid and stilbene to their corresponding epoxides, cyclohexanone to its corresponding lactone and 2-phenylacetophenone to its corresponding ester, demonstrate the viability of the sugar NaDES as a reaction medium for epoxidation and Baeyer-Villiger oxidation.
Green Oxidation of Ketones to Lactones with Oxone in Water
Bertolini, Valentina,Appiani, Rebecca,Pallavicini, Marco,Bolchi, Cristiano
, p. 15712 - 15716 (2021/11/01)
Cyclic ketones were quickly and quantitatively converted to 5-, 6-, and 7-membered lactones, very important synthons, by treatment with Oxone, a cheap, stable, and nonpollutant oxidizing reagent, in 1 M NaH2PO4/Na2HPO4 water solution (pH 7). Under such simple and green conditions, no hydroxyacid was formed, thus making the adoption of more complex and non-eco-friendly procedures previously developed to avoid lactone hydrolysis unnecessary. With some changes, the method was successfully applied also to water-insoluble ketones such as adamantanone, acetophenone, 2-indanone, and the challenging cycloheptanone.
Method for catalytically synthesizing δ - cyclopentanone by amino acid ionic liquid
-
Paragraph 0019-0036, (2021/05/19)
The invention relates to a method for catalyzing oxo-synthesis of sigma-cyclovalerolactone from cyclopentanone by amino-acid ionic liquid. The method is characterized by comprising the steps of catalyzing hydrogen peroxide to oxidate the cyclopentanone by a catalyst, i.e., ionic liquid synthesized from proline, aspartic acid, trifluoromethane-sulfonic acid and phosphotungstic heteropoly acid, thereby producing the sigma-cyclovalerolactone, wherein the mole ratio of the proline and the aspartic acid to the trifluoromethane-sulfonic acid and the phosphotungstic heteropoly acid is 1: 1. The amino-acid ionic liquid has the advantages of low price and availability of the raw materials, simple preparation method high biodegradability and environmental friendliness; the amino-acid ionic liquid contains a -COOH functional group, can be used for providing an appropriate acidic environment for the preparation of the sigma-cyclovalerolactone through oxidating the cyclopentanone, and is high in catalysis activity; in addition, the amino-acid ionic liquid is soluble in water, is easy to separate and recover and cycle use efficiency is high.
Highly Dispersed Sn-beta Zeolites as Active Catalysts for Baeyer-Villiger Oxidation: The Role of Mobile, in Situ Sn(II)O Species in Solid-State Stannation
Peeters, Elise,Pomalaza, Guillaume,Khalil, Ibrahim,Detaille, Arnaud,Debecker, Damien P.,Douvalis, Alexios P.,Dusselier, Michiel,Sels, Bert F.
, p. 5984 - 5998 (2021/05/31)
Solid-state incorporation of Sn into beta (β) zeolites is a fast and efficient method to obtain Lewis acidic Snβ catalysts with high activity. The present work emphasizes the fundamental role of the heat-treatment atmosphere in the solid-state incorporation of active Sn in zeolites. Via an array of characterization tools including N2-physisorption, X-ray diffraction, diffuse reflectance UV-vis spectrocopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and 119Sn M?ssbauer spectroscopy, it is shown that preheating under an inert atmosphere (pre-pyrolysis) prior to air-calcination affords Sn-β catalysts with the highest Sn dispersion and significantly less extra-framework SnO2 compared to the classic calcination. In situ characterization during pre-pyrolysis by temperature-programed decomposition-mass spectrometry, thermogravimetric analysis, and 119Sn M?ssbauer spectroscopy reveals the in situ generation of Sn(II)O species that are more mobile than Sn(IV)O2 species generated during calcination. This mobility property essentially enables the high Sn dispersion in Snβ. Based on this knowledge, active sites per catalyst weight are maximized while retaining high turn-over frequencies for the Baeyer-Villiger oxidation reaction (300 h-1 at 80 °C). For Lewis acid densities above 200 μmol·g-1, the catalytic activity unexpectedly leveled off to 93 mM·h-1, even under kinetic control. We tentatively ascribe the activity plateau to the incorporation of Sn in less favorable T-sites at high Sn-loadings.
A Polyoxometalate-Based Inorganic Porous Material with both Proton and Electron Conductivity by Light Actuation: Photocatalysis for Baeyer-Villiger Oxidation and Cr(VI) Reduction
Du, Wei,Han, Qiuxia,Jiao, Jiachen,Li, Mingxue,Ma, Pengtao,Niu, Jingyang,Si, Chen,Wu, Jingpin
, p. 682 - 691 (2021/01/13)
Two-dimensional (2D) crystalline porous materials with designable structures and high surface areas are currently a hot research topic in the field of proton- and electron-conducting materials, which provide great opportunities to orderly accommodate carriers in available spaces and to accurately understand the conducting path. The 2D dual-conductive inorganic framework [Co(H2O)6]2{[Co(H2O)4]4[WZn3(H2O)2(ZnW9O34)2]}·8H2O (Co6Zn5W19) is synthesized by combining [WZn3(H2O)2(ZnW9O34)2]12- (Zn5W19) and a Co(II) ion via a hydrothermal method. Due to the presence of a consecutive H-bonding network, electrostatic interactions, and packing effects between the framework and guest molecules, Co6Zn5W19 displays a high proton conductivity (3.55 × 10-4 S cm-1 under 98% RH and 358 K) by a synergistic effect of the combined components. Additionally, a photoactuated electron injection into the semiconducting materials is an important strategy for switching electronic conductivity, because it can efficiently reduce the frameworks without destroying the crystallinity. I-V curves of a tablet of Co6Zn5W19 in the reduced and oxidized states yield conductivities of 1.26 × 10-6 and 5 × 10-8 S cm-1, respectively. Moreover, Co6Zn5W19 is also successfully applied in the photocatalytic reduction of the toxic Cr(VI) metal ion by utilizing its excellent electronic storage capacity and Baeyer-Villiger (BV) oxidation in a molecular oxygen/aldehyde system.
(Cyclopentadienone)iron-Catalyzed Transfer Dehydrogenation of Symmetrical and Unsymmetrical Diols to Lactones
Tang, Yidan,Meador, Rowan I. L.,Malinchak, Casina T.,Harrison, Emily E.,McCaskey, Kimberly A.,Hempel, Melanie C.,Funk, Timothy W.
, p. 1823 - 1834 (2020/02/04)
Air-stable iron carbonyl compounds bearing cyclopentadienone ligands with varying substitution were explored as catalysts in dehydrogenative diol lactonization reactions using acetone as both the solvent and hydrogen acceptor. Two catalysts with trimethylsilyl groups in the 2- A nd 5-positions, [2,5-(SiMe3)2-3,4-(CH2)4(δ4-C4C= O)]Fe(CO)3 (1) and [2,5-(SiMe3)2-3,4-(CH2)3(δ4-C4C= O)]Fe(CO)3 (2), were found to be the most active, with 2 being the most selective in the lactonization of diols containing both primary and secondary alcohols. Lactones containing five-, six-, and seven-membered rings were successfully synthesized, and no over-oxidations to carboxylic acids were detected. The lactonization of unsymmetrical diols containing two primary alcohols occurred with catalyst 1, but selectivity was low based on alcohol electronics and modest based on alcohol sterics. Evidence for a transfer dehydrogenation mechanism was found, and insight into the origin of selectivity in the lactonization of 1°/2° diols was obtained. Additionally, spectroscopic evidence for a trimethylamine-ligated iron species formed in solution during the reaction was discovered.
Effect of pretreatment conditions on acidity and dehydration activity of CeO2-MeOx catalysts
Cronauer, Donald C.,Góra-Marek, Kinga,Garcia, Richard,Gnanamani, Muthu Kumaran,Jacobs, Gary,Kropf, A. Jeremy,Marshall, Christopher L.
, (2020/07/10)
A series of MeOx-modified CeO2 (CeO2-MnOx, CeO2-ZnO, CeO2-MgO, CeO2-CaO, and CeO2-Na2O) catalysts were prepared by the impregnation of CeO2 with corresponding metal nitrates. Acidity and oxidation state of cerium were investigated on both oxidized and reduced catalysts by employing Fourier Transform Infrared spectroscopy (FTIR) on adsorbed pyridine and in situ H2-Temperature Programmed Reduction/X-ray Absorption Spectroscopy (H2-TPR/XAS) techniques, respectively. Metal oxide addition tended to alter both type and number of acid sites on ceria. EXAFS data showed a significant difference in NCe-O between unmodified and CeO2-MeOx, suggesting that added MeOx interferes with vacancy formation on ceria during reduction. In comparison with air-pretreated samples, H2-pretreated ones under similar conversion of 1,5 pentanediol exhibited a higher selectivity towards linear alcohols. Alcohol conversion found to correlate with total acidity (i.e., Br?nsted and Lewis). CeO2 benefited from the addition of alkali (Na) or alkaline earth metals (Mg, Ca) by producing unsaturated alcohols.