637-69-4Relevant articles and documents
Photoredox Catalyzed Sulfonylation of Multisubstituted Allenes with Ru(bpy)3Cl2 or Rhodamine B
Chen, Jingyun,Chen, Shufang,Jiang, Jun,Lu, Qianqian,Shi, Liyang,Xu, Zekun,Yimei, Zhao
supporting information, (2021/11/09)
A highly regio- and stereoselective sulfonylation of allenes was developed that provided direct access to α, β-substituted unsaturated sulfone. By means of visible-light photoredox catalysis, the free radicals produced by p-toluenesulfonic acid reacted with multisubstituted allenes to obtain Markovnikov-type vinyl sulfones with Ru(bpy)3Cl2 or Rhodamine B as photocatalyst. The yield of this reaction could reach up to 91%. A series of unsaturated sulfones would be used for further transformation to some valuable compounds.
Functionalized styrene synthesis via palladium-catalyzed C[sbnd]C cleavage of aryl ketones
Dai, Hui-Xiong,Wang, Xing,Wang, Zhen-Yu,Xu, Hui,Zhang, Xu
supporting information, (2022/03/31)
We report herein the synthesis of functionalized styrenes via palladium-catalyzed Suzuki–Miyaura cross-coupling reaction between aryl ketone derivatives and potassium vinyltrifluoroborate. The employment of pyridine-oxazoline ligand was the key to the cleavage of unstrained C[sbnd]C bond. A variety of functional groups and biologically important moleculars were well tolerated. The orthogonal Suzuki–Miyaura coupling demonstrated the synthetic practicability.
KO-t-Bu Catalyzed Thiolation of β-(Hetero)arylethyl Ethers via MeOH Elimination/hydrothiolation
Shigeno, Masanori,Shishido, Yoshiteru,Hayashi, Kazutoshi,Nozawa-Kumada, Kanako,Kondo, Yoshinori
supporting information, p. 3932 - 3935 (2021/08/24)
Herein, we describe a KO-t-Bu catalyzed thiolation of β-(hetero)arylethyl ethers through MeOH elimination to form (hetero)arylalkenes followed by anti-Markovnikov hydrothiolation to afford linear thioethers. The system works well with a variety of β-(hetero)arylethyl ethers, including electron-deficient, electron-neutral, electron-rich, and branched substrates and a range of aliphatic and aromatic thiols.
Controlling the Lewis Acidity and Polymerizing Effectively Prevent Frustrated Lewis Pairs from Deactivation in the Hydrogenation of Terminal Alkynes
Geng, Jiao,Hu, Xingbang,Liu, Qiang,Wu, Youting,Yang, Liu,Yao, Chenfei
, p. 3685 - 3690 (2021/05/31)
Two strategies were reported to prevent the deactivation of Frustrated Lewis pairs (FLPs) in the hydrogenation of terminal alkynes: reducing the Lewis acidity and polymerizing the Lewis acid. A polymeric Lewis acid (P-BPh3) with high stability was designed and synthesized. Excellent conversion (up to 99%) and selectivity can be achieved in the hydrogenation of terminal alkynes catalyzed by P-BPh3. This catalytic system works quite well for different substrates. In addition, the P-BPh3 can be easily recycled.
Rapid synthesis method of biomass-based olefin
-
Paragraph 0020; 0041-0046; 0049-0050, (2021/07/31)
The invention discloses a rapid synthesis method of biomass-based olefin, which comprises the following steps: by taking a biomass ketone compound as a substrate and 2-pentanol as a hydrogen source and a solvent at the same time, under the action of hafnium/zirconium-based catalysts such as hafnium phenylphosphonate and Zirconium phenylphosphonate, hafnium phytate andzirconium phytate and hafnium polydivinylphenylphosphonate and zirconium polydivinylphenylphosphonate, selectively converting a biomass-based ketone compound into a corresponding alcohol compound, and continuously dehydrating to prepare olefin. According to the present invention, the time required by the system reaction is substantially shortened and is at least 2 h, the target product selectivity is significantly improved, the conversion rate of the representative reaction 4 '-methoxypropiophenone can at least achieve 99.8%, and the anethole yield can achieve 98.1%.
Electrochemistry enabled selective vicinal fluorosulfenylation and fluorosulfoxidation of alkenes
Jiang, Yimin,Shi, Zhaojiang,Wu, Jinnan,Wu, Shaofen,Ye, Keyin,Yu, Yi,Yuan, Yaofeng
supporting information, (2021/11/17)
Both sulfur and fluorine play important roles in organic synthesis, the life science, and materials science. The direct incorporation of these elements into organic scaffolds with precise control of the oxidation states of sulfur moieties is of great significance. Herein, we report the highly selective electrochemical vicinal fluorosulfenylation and fluorosulfoxidation reactions of alkenes, which were enabled by the unique ability of electrochemistry to dial in the potentials on demand. Preliminary mechanistic investigations revealed that the fluorosulfenylation reaction proceeded through a radical-polar crossover mechanism involving a key episulfonium ion intermediate. Subsequent electrochemical oxidation of fluorosulfides to fluorosulfoxides were readily achieved under a higher applied potential with the adventitious H2O in the reaction mixture.
A donor-acceptor complex enables the synthesis of: E -olefins from alcohols, amines and carboxylic acids
Chen, Kun-Quan,Shen, Jie,Wang, Zhi-Xiang,Chen, Xiang-Yu
, p. 6684 - 6690 (2021/05/31)
Olefins are prevalent substrates and functionalities. The synthesis of olefins from readily available starting materials such as alcohols, amines and carboxylic acids is of great significance to address the sustainability concerns in organic synthesis. Metallaphotoredox-catalyzed defunctionalizations were reported to achieve such transformations under mild conditions. However, all these valuable strategies require a transition metal catalyst, a ligand or an expensive photocatalyst, with the challenges of controlling the region- and stereoselectivities remaining. Herein, we present a fundamentally distinct strategy enabled by electron donor-acceptor (EDA) complexes, for the selective synthesis of olefins from these simple and easily available starting materials. The conversions took place via photoactivation of the EDA complexes of the activated substrates with alkali salts, followed by hydrogen atom elimination from in situ generated alkyl radicals. This method is operationally simple and straightforward and free of photocatalysts and transition-metals, and shows high regio- and stereoselectivities.
The first one-pot metathesis-hydroformylation procedure: a straight synthesis of 2-arylpropanals from renewable 1-propenylbenzenes
Avenda?o Villarreal, Jesus Alberto,Delolo, Fábio Godoy,Granato, Artur Vicari,Gusevskaya, Elena Vitalievna,dos Santos, Eduardo Nicolau
, p. 8007 - 8013 (2021/12/27)
Hydroformylation is a consolidated synthetic tool in the chemical industry, both in commodity and in the fine chemicals industry. Olefin metathesis has been largely employed in the petrochemical sector, and, more recently, in the synthesis of specialty chemicals. Although these reactions may be involved in the same synthetic route for various industrial chemicals, to the best of our knowledge, they have never been combined in a one-pot procedure. As a proof of concept, we have demonstrated in the present work that the ruthenium-catalyzed ethenolysis of renewable 1-propenylbenzenes followed by the rhodium-catalyzed hydroformylation of functionalized styrenes formed in the first step could be done in one pot. The integration of these reactions was not straightforward once the catalyst of the first step interfered with the catalyst of the second step. Under optimized conditions, it was possible to synthesize 2-arylpropanals, a class of compounds valuable as synthetic intermediates to access non-steroidal anti-inflammatory drugs, in overall yields of 85-90%, at low catalyst loadings.
Copper-Catalyzed Methoxylation of Aryl Bromides with 9-BBN-OMe
Li, Chen,Song, Zhi-Qiang,Wang, Dong-Hui,Wang, Jing-Ru
supporting information, p. 8450 - 8454 (2021/11/17)
A Cu-catalyzed cross-coupling reaction between aryl bromides and 9-BBN-OMe to provide aryl methyl ethers under mild conditions is reported. The oxalamide ligand BHMPO plays a key role in the transformation. Various functional groups on bromobenzenes are well tolerated, providing the desired anisole products in moderate to high yields.
Site-Selective Acceptorless Dehydrogenation of Aliphatics Enabled by Organophotoredox/Cobalt Dual Catalysis
Zhou, Min-Jie,Zhang, Lei,Liu, Guixia,Xu, Chen,Huang, Zheng
supporting information, p. 16470 - 16485 (2021/10/20)
The value of catalytic dehydrogenation of aliphatics (CDA) in organic synthesis has remained largely underexplored. Known homogeneous CDA systems often require the use of sacrificial hydrogen acceptors (or oxidants), precious metal catalysts, and harsh reaction conditions, thus limiting most existing methods to dehydrogenation of non- or low-functionalized alkanes. Here we describe a visible-light-driven, dual-catalyst system consisting of inexpensive organophotoredox and base-metal catalysts for room-temperature, acceptorless-CDA (Al-CDA). Initiated by photoexited 2-chloroanthraquinone, the process involves H atom transfer (HAT) of aliphatics to form alkyl radicals, which then react with cobaloxime to produce olefins and H2. This operationally simple method enables direct dehydrogenation of readily available chemical feedstocks to diversely functionalized olefins. For example, we demonstrate, for the first time, the oxidant-free desaturation of thioethers and amides to alkenyl sulfides and enamides, respectively. Moreover, the system's exceptional site selectivity and functional group tolerance are illustrated by late-stage dehydrogenation and synthesis of 14 biologically relevant molecules and pharmaceutical ingredients. Mechanistic studies have revealed a dual HAT process and provided insights into the origin of reactivity and site selectivity.