99-88-7Relevant articles and documents
Rhodium-terpyridine Catalyzed Transfer Hydrogenation of Aromatic Nitro Compounds in Water
Liu, Yuxuan,Miao, Wang,Tang, Weijun,Xue, Dong,Xiao, Jianliang,Wang, Chao,Li, Changzhi
supporting information, p. 1725 - 1729 (2021/06/01)
A rhodium terpyridine complex catalyzed transfer hydrogenation of nitroarenes to anilines with i-PrOH as hydrogen source and water as solvent has been developed. The catalytic system can work at a substrate/catalyst (S/C) ratio of 2000, with a turnover frequency (TOF) up to 3360 h?1, which represents one of the most active catalytic transfer hydrogenation systems for nitroarene reduction. The catalytic system is operationally simple and the protocol could be scaled up to 20 gram scale. The water-soluble catalyst bearing a carboxyl group could be recycled 15 times without significant loss of activity.
Manganese Catalyzed Hydrogenation of Azo (N=N) Bonds to Amines
Ben-David, Yehoshoa,Das, Uttam Kumar,Diskin-Posner, Yael,Kar, Sayan,Milstein, David
supporting information, p. 3744 - 3749 (2021/07/09)
We report the first example of homogeneously catalyzed hydrogenation of the N=N bond of azo compounds using a complex of an earth-abundant-metal. The hydrogenation reaction is catalyzed by a manganese pincer complex, proceeds under mild conditions, and yields amines, which makes this methodology a sustainable alternative route for the conversion of azo compounds. A plausible mechanism involving metal-ligand cooperation and hydrazine intermediacy is proposed based on mechanistic studies. (Figure presented.).
Commercially Available CuO Catalyzed Hydrogenation of Nitroarenes Using Ammonia Borane as a Hydrogen Source
Du, Jialei,Chen, Jie,Xia, Hehuan,Zhao, Yiwei,Wang, Fang,Liu, Hong,Zhou, Weijia,Wang, Bin
, p. 2426 - 2430 (2020/03/30)
Tandem ammonia borane dehydrogenation and nitroarenes hydrogenation has been reported as a novel strategy for the preparation of aromatic amines. However, the practical application of this strategy is subjected to the high-cost and tedious preparation of supported noble metal nanocatalysts. The commercially available CuO powder is herein demonstrated to be a robust catalyst for hydrogenation of nitroarenes using ammonia borane as a hydrogen source under mild conditions. Numerous amines (even sterically hindered, halogenated, and diamines) could be obtained through this method. This monometallic catalyst is characteristic of support-free, excellent chemoselectivity, low-cost, and high recyclability, which will favor its future utilization in preparative reduction chemistry. Mechanistic studies are also carried out to clarify that diazene and azoxybenzene are key intermediates of this heterogeneous reduction.
Synthesis method of aniline compound
-
Paragraph 0136-0138, (2020/08/09)
The invention provides a synthesis method of an aniline compound. The synthesis comprises the following steps: taking a carbon-coated nickel nano composite material containing alkali metals as a catalyst, and catalyzing a hydrogenation reduction reaction of a nitrobenzene compound in a hydrogen atmosphere, wherein the nano composite material contains a core-shell structure with a shell layer and an inner core, the shell layer is a graphitized carbon layer containing alkali metal, nitrogen and oxygen, and the inner core is nickel nano particles. According to the method, the nano composite material is used as a catalyst; a carbon material and the nickel nano particles generate a synergistic effect and a good catalytic effect, the alkali metals of the shell layer further synergistically improve the catalytic performance of the nano composite material, and the catalyst is used for hydrogenation reduction of nitrobenzene compounds to synthesize aniline compounds, and has excellent activity,selectivity and safety.
Synthesis method of aniline compound
-
Paragraph 0135-0137, (2020/08/09)
The invention provides a synthesis method of an aniline compound. The synthesis method comprises the following steps: taking a carbon-coated nickel nano composite material containing alkaline-earth metals as a catalyst, and catalyzing a hydrogenation reduction reaction of a nitrobenzene compound in a hydrogen atmosphere; wherein the nano composite material contains a core-shell structure with a shell layer and an inner core, the shell layer is a graphitized carbon layer containing alkaline-earth metals, nitrogen and oxygen, and the inner core is nickel nano particles. According to the method,the nano composite material is used as a catalyst; the carbon material and the nickel nano particles generate a synergistic effect and a good catalytic effect, the alkaline-earth metals of the shell layer further synergistically improve the catalytic performance of the nano composite material, and the catalyst is used for hydrogenation reduction of nitrobenzene compounds to synthesize aniline compounds, and has excellent activity, selectivity and safety.
Superfine CoNi alloy embedded in Al2O3 nanosheets for efficient tandem catalytic reduction of nitroaromatic compounds by ammonia borane
Cheng, Sihang,Liu, Yanchun,Zhao, Yingnan,Zhao, Xinyu,Lang, Zhongling,Tan, Huaqiao,Qiu, Tianyu,Wang, Yonghui
, p. 17499 - 17506 (2019/12/23)
Aromatic amino compounds are important and universally used chemical intermediates in a wide range of industrial fields. Thus, their production with high efficiency and selectivity under ambient conditions is expected and demanded in modern industry. Herein, a series of superfine CoNi alloy nanoparticles embedded in Al2O3 nanosheet (CoxNi1-x/Al2O3, where x represents the content of Co in the precursor) catalysts was fabricated from CoNiAl-LDH and used to catalyze the tandem dehydrogenation of ammonia borane (AB) and hydrogenation of nitroaromatics to the corresponding amines. Systematic experiments indicate that the composition, size, morphology and catalytic performance of the CoxNi1-x/Al2O3 catalysts can be easily controlled by changing the content of Ni in the CoNiAl-LDH precursor. Particularly, Co0.67Ni0.33/Al2O3 exhibited the best tandem catalytic performance among the six samples. This as-prepared catalyst not only showed a moderate turn-over-frequency value (TOF: 34.5 molH2 molCo0.67Ni0.33-1 min-1 at 298 K without base or additives) and relatively low activation energy (32.4 kJ mol-1) for the dehydrogenation of AB, but also superior catalytic activity (conversion yield reaching up to 100%) and selectivity (>99%) for the tandem reductive transformation of in excess of sixteen types of nitroaromatics to aromatic amines. Density functional theory (DFT) calculations suggest that the construction of the CoNi alloy optimized the electronic structure with respect to the pure component, promoting its activity for AB hydrolysis and nitroaromatics hydrogenation. Finally, the catalyst could be easily recycled using a magnet due to the magnetic properties of the Co0.67Ni0.33 alloy.
Metal-free chemoselective reduction of nitroaromatics to anilines via hydrogen transfer strategy
Shuai, Qi,Li, Jun,Zhao, Feng,Su, Weike,Deng, Guojun
, p. 965 - 975 (2019/04/13)
A novel protocol for chemoselective reduction of aromatic nitro compounds to aromatic amines has been established. The metal-free reduction goes through a hydrogen transfer process. Various easily reducible functional groups can be well tolerated under the optimized reaction conditions.
A switchable-selectivity multiple-interface Ni-WC hybrid catalyst for efficient nitroarene reduction
Ma, Yuanyuan,Lang, Zhongling,Du, Jing,Yan,Wang, Yonghui,Tan, Huaqiao,Khan, Shifa Ullah,Liu, Yang,Kang, Zhenhui,Li, Yangguang
, p. 174 - 182 (2019/08/06)
Selective reduction of nitroarenes is extremely valuable in industrial chemical production. The main reduced products are usually aniline derivatives obtained using single-component noble- or transition-metal catalysts; however, other important products such as hydrazobenzene derivatives always involve in harsh conditions and multiple reaction steps. Here, we realize an unexpected switchable reduction of nitroarenes into aniline or hydrazobenzene derivatives with high yield and selectivity just by controlling the molar ratio of nitroarenes to N2H4·H2O with a nickel–tungsten carbide composite nanocatalyst loaded on carbon (Ni-WC/C). A series of control experiments and density functional theory (DFT) calculations indicate that the multiple interfaces between Ni and WC can induce a synergistic effect, significantly modulating the electronic structure of the Ni-WC/C catalyst, and endowing the catalyst with switchable selectivity and high activity for the reduction of nitroarenes by hydrogenation. This synergistic multi-interfacial catalyst may offer a new way to design and explore highly efficient and selective catalysts for the controllable reduction of nitroarenes and similar hydrogenation reactions.
Telescoped Sequence of Exothermic and Endothermic Reactions in Multistep Flow Synthesis
Sharma, Yachita,Nikam, Arun V.,Kulkarni, Amol A.
, p. 170 - 176 (2019/02/01)
A multistep sequential flow synthesis of isopropyl phenol is demonstrated, involving 4-step exothermic, endothermic, and temperature sensitive reactions such as nitration, reduction, diazotization, and high temperature hydrolysis. Nitration of cumene with fuming nitric acid produces 2- A nd 4-nitrocumene which are converted into respective cumidines by the hydrogenation using Pd/Ni catalyst in H-cube with gravity separation. Hydrolysis of in situ generated diazonium salts in the boiling acidic conditions is carried out using integration of flow and microwave-assisted synthesis. 58% of 4-isopropyl phenol was obtained. The sequential flow synthesis can be applied to synthesize other organic compounds involving this specific sequence of reactions.
COMPOUNDS FOR THIOL-TRIGGERED COS AND/OR H2S RELEASE AND METHODS OF MAKING AND USING THE SAME
-
Page/Page column 35, (2019/12/25)
Disclosed herein are embodiments of a compound that is capable of releasing COS and/or H2S upon reaction with a thiol-containing compound. The compound embodiments also can produce a detectable signal (e.g., a fluorescent signal) substantially concomitantly with COS and/or H2S release and/or can release an active agent, such as a therapeutic agent. Methods of making and using the compound embodiments also are disclosed.