1878-66-6Relevant articles and documents
Asymmetric Catalytic Alkylation of 4-Chlorophenylacetic Acid
Mi, A. Q.,Wang, Z. Y.,Jiang, Y. Z.
, p. 1957 - 1960 (1993)
Using N-(monoalkyl)-α,β-diphenyl-β-hydroxy ethylamine as chiral ligands, 46.2percent enantiomeric excess was obtained in the asymmetric catalytic alkylation of 4-chlorophenylacetic acid.
α-thiocyanation of carbonyl and β-dicarbonyl compounds using (dichloroiodo)benzene-lead(II) thiocyanate
Prakash,Kaur,Batra,Rani,Singh,Moriarty
, p. 2019 - 2023 (2001)
The combination reagent (dichloroiodo)benzene and lead(II) thiocyanate in dichloromethane effects oxidation of various enol silyl ethers, ketene silyl acetals, and β-dicarbonyl compounds, thereby providing an efficient and convenient method for α-thiocyanation of carbonyl and β-dicarbonyl compounds.
Method for preparing carboxylic acid by one-pot method
-
Paragraph 0051-0055, (2021/01/29)
The invention discloses a method for preparing carboxylic acid by a one-pot method, which comprises the steps of carrying out a Corey-Fuchs process on 1,1-dibromo olefin under the action of n-butyllithium, reacting with isopropanol pinacol borate, quenching with hydrogen chloride, oxidizing with an oxidant, separating and purifying to obtain carboxylic acid. The method disclosed by the invention is a one-pot preparation method, is simple and convenient to operate, does not need to use metal catalysis, uses cheap and easily available reagents for reaction, is green and environment-friendly, hasmild reaction conditions and wide substrate applicability, and provides a new way for rapidly preparing a series of carboxylic acids containing different functional groups.
Visible-Light-Enabled Carboxylation of Benzyl Alcohol Derivatives with CO2 Using a Palladium/Iridium Dual Catalyst
Iwasawa, Nobuharu,Jin, Yushu,Toriumi, Naoyuki
, (2021/12/14)
A highly efficient carboxylation of benzyl alcohol derivatives with CO2 using a palladium/iridium dual catalyst under visible-light irradiation was developed. A wide range of benzyl alcohol derivatives could be employed to provide benzylic carboxylic acids in moderate to high yields. Mechanistic studies indicated that the oxidative addition of benzyl alcohol derivatives was possibly the rate-determining-step. It was also found that a switchable site-selective carboxylation between benzylic C?O and aryl C?Cl moieties could be achieved simply by changing the palladium catalyst.
Alkali-modified heterogeneous Pd-catalyzed synthesis of acids, amides and esters from aryl halides using formic acid as the CO precursor
Fapojuwo, Dele Peter,Maqunga, Nomathamsanqa Prudence,Meijboom, Reinout,Mogudi, Batsile M.,Molokoane, Pule Petrus,Onisuru, Oluwatayo Racheal,Oseghale, Charles O.
, p. 26937 - 26948 (2021/08/17)
To establish an environmentally friendly green chemical process, we minimized and resolved a significant proportion of waste and hazards associated with conventional organic acids and molecular gases, such as carbon monoxide (CO). Herein, we report a facile and milder reaction procedure, using low temperatures/pressures and shorter reaction time for the carboxyl- and carbonylation of diverse arrays of aryl halides over a newly developed cationic Lewis-acid promoted Pd/Co3O4catalyst. Furthermore, the reaction proceeded in the absence of acid co-catalysts, and anhydrides for CO release. Catalyst reusability was achievedviascalable, safer, and practical reactions that provided moderate to high yields, paving the way for developing a novel environmentally benign method for synthesizing carboxylic acids, amides, and esters.
Desulfonylative Electrocarboxylation with Carbon Dioxide
Zhong, Jun-Song,Yang, Zi-Xin,Ding, Cheng-Lin,Huang, Ya-Feng,Zhao, Yi,Yan, Hong,Ye, Ke-Yin
supporting information, p. 16162 - 16170 (2021/09/02)
Electrocarboxylation of organic halides is one of the most investigated electrochemical approaches for converting thermodynamically inert carbon dioxide (CO2) into value-added carboxylic acids. By converting organic halides into their sulfone derivatives, we have developed a highly efficient electrochemical desulfonylative carboxylation protocol. Such a strategy takes advantage of CO2as the abundant C1 building block for the facile preparation of multifunctionalized carboxylic acids, including the nonsteroidal anti-inflammatory drug ibuprofen, under mild reaction conditions.
Pd(OH)2/C, a Practical and Efficient Catalyst for the Carboxylation of Benzylic Bromides with Carbon Monoxide
Wakuluk-Machado, Anne-Marie,Dewez, Damien F.,Baguia, Hajar,Imbratta, Miguel,Echeverria, Pierre-Georges,Evano, Gwilherm
, p. 713 - 723 (2020/02/04)
A simple, efficient, cheap, and broadly applicable system for the carboxylation of benzylic bromides with carbon monoxide and water is reported. Upon simple reaction with only 2.5 wt % of Pearlman's catalyst and 10 mol % of tetrabutylammonium bromide in tetrahydrofuran at 110 °C for 4 h, a range of benzylic bromides can be smoothly converted to the corresponding arylacetic acids in good to excellent yields after simple extraction and acid-base wash. The reaction was found to be broadly applicable, scalable, and could be successfully extended to the use of ex situ-generated carbon monoxide and applied to the synthesis of the nonsteroidal anti-inflammatory drug diclofenac.
Oxidation of Alkynyl Boronates to Carboxylic Acids, Esters, and Amides
Li, Chenchen,Li, Ruoling,Zhang, Bing,Zhao, Pei,Zhao, Wanxiang
supporting information, p. 10913 - 10917 (2020/05/25)
A general efficient protocol was developed for the synthesis of carboxylic acids, esters, and amides through oxidation of alkynyl boronates, generated directly from terminal alkynes. This protocol represents the first example of C(sp)?B bond oxidation. This approach displays a broad substrate scope, including aryl and alkyl alkynes, and exhibits excellent functional group tolerance. Water, primary and secondary alcohols, and amines are suitable nucleophiles for this transformation. Notably, amino acids and peptides can be used as nucleophiles, providing an efficient method for the synthesis and modification of peptides. The practicability of this methodology was further highlighted by the preparation of pharmaceutical molecules.
Method for converting benzyl borate compounds into phenylacetic acid and derivatives thereof by carbon dioxide
-
Paragraph 0036-0037, (2020/03/06)
The invention discloses a method for converting benzyl borate compounds into phenylacetic acid and derivatives thereof by carbon dioxide. The method comprises the steps: dissolving the benzyl borate compounds and an alkali in an organic solvent in the absence of a metal catalyst, introducing carbon dioxide into the reaction system, carrying out a reaction at the temperature of 50-150 DEG C for 3-72 hours, and acidifying to obtain phenylacetic acid or the derivatives thereof. The method is a green, simple and efficient method for synthesizing phenylacetic acid and the derivatives thereof, greenhouse gas carbon dioxide is used as a carbon source in the reaction, no transition metal catalyst is used, and the method is environmentally friendly, economical and high in efficiency.
BF3·OEt2-promoted tandem Meinwald rearrangement and nucleophilic substitution of oxiranecarbonitriles
Xu, Chuangchuang,Xu, Jiaxi
, p. 127 - 134 (2019/12/26)
Tandem Meinwald rearrangement and nucleophilic substitution of oxiranenitriles was realized. Arylacetic acid derivatives were readily synthesized from 3-aryloxirane-2-carbonitriles with amines, alcohols, or water in the presence of boron trifluoride under microwave irradiation, and the designed synthetic strategy includes introducing a cyano leaving group into arylepoxides and capturing the in situ generated toxic cyanide with boron trifluoride, making the reaction efficient, safe, and environmentally benign. The reaction occurs through an acid-promoted Meinwald rearrangement, producing arylacetyl cyanides, followed by an addition-elimination process with nitrogen or oxygen-containing nucleophilic amines, alcohols or water. The current method provides a new application of the tandem Meinwald rearrangement.