79-06-1Relevant articles and documents
Reactivity of secondary N-alkyl acrylamides in Morita–Baylis–Hillman reactions
Ahmar, Mohammed,Queneau, Yves,Verrier, Charlie,Yue, Xiaoyang
, p. 319 - 330 (2021/10/29)
The Morita–Baylis–Hillman (MBH) reaction of secondary N-alkyl acrylamides, discarded up to now from investigations of the scope of activated alkenes, was studied. Optimization of the reaction conditions revealed that a balance must be found between activation of the MBH coupling reaction and that of the undesired competitive aldehyde Cannizzaro reaction. Using 3-Hydroxyquinuclidine (3-HQD) in a 1:1 water-2-MeTHF mixture provides the appropriate conditions that were applicable to a wide range of diversely substituted secondary N-alkyl acrylamides and aromatic aldehydes, giving rise to novel amide-containing MBH adducts under mild and clean conditions.
Ru(ii)- And Ru(iv)-dmso complexes catalyze efficient and selective aqueous-phase nitrile hydration reactions under mild conditions
Dubey, Santosh Kumar,Kaur, Gurmeet,Rath, Nigam P.,Trivedi, Manoj
, p. 17339 - 17346 (2021/10/08)
New water-soluble ruthenium(ii)- and ruthenium(iv)-dmso complexes [RuCl2(dmso)2(NH3)(CH3CN)] (1), [RuCl2(dmso)3(CH3CN)] (2), and [RuCl2(dmso)3(NH3)]·PF6·Cl (3) have been synthesized and characterized using elemental analyses, IR, 1H and 31P NMR, and electronic absorption spectroscopy. The molecular structures of complexes 1-3 were determined crystallographically. The reactivity of complexes 1-3 has been tested for aqueous-phase nitrile hydration at 60 °C in air, and good efficiency and selectivity are shown for the corresponding amide derivatives. Best performance is achieved with complex 3. Amide conversions of 56-99% were obtained with a variety of aromatic, alkyl, and vinyl nitriles. The reaction tolerated hydroxyl, nitro, bromo, formyl, pyridyl, benzyl, alkyl, and olefinic functional groups. Amides were isolated by simple decantation from the aqueous-phase catalyst. A catalyst loading down to 0.0001 mol% was examined and turnover numbers as high as 990?000 were observed. The catalyst was stable for weeks in solution and could be reused more than seven times without significant loss in catalytic activity. The gram-scale reaction was also performed to produce the desired product in high yields. This journal is
INTEGRATED METHODS AND SYSTEMS FOR PRODUCING AMIDE AND NITRILE COMPOUNDS
-
Paragraph 00100, (2020/09/30)
Provided herein are integrated methods and systems for the production of acrylamide and acrylonitrile compounds and other compounds from at least beta-lactones and/or beta-hydroxy amides.
Simultaneous generation of acrylamide, β-carboline heterocyclic amines and advanced glycation ends products in an aqueous Maillard reaction model system
Chen, Jie,He, Zhiyong,Jiao, Ye,Li, Yong,Liu, Guoping,Qin, Fang,Quan, Wei,Wang, Zhaojun,Xue, Chaoyi,Zeng, Maomao
, (2020/07/06)
The simultaneous formation of acrylamide; β-carboline heterocyclic amines (HAs): harmane and norharmane; and advanced glycation end products (AGEs) (Nε-(carboxymethyl)lysine (CML) and Nε-(carboxyethyl)lysine (CEL)) was analyzed based on an aqueous model system. The model systems included lysine–glucose (Lys/Glu), asparagine–glucose (Asn/Glu), tryptophan–glucose (Trp/Glu), and a mixture of these amino acids (Mix/Glu). Only AGEs were generated when heated at 100 °C, Asn and Trp competed with Lys for glucose and methylglyoxal (MGO), and glyoxal (GO) decreased AGE content. The k value of CML, CEL, and acrylamide decreased when heated at 130 °C, whereas that of harmane increased in the Mix/Glu, owing to the competition between Lys and Asn for glucose, GO, and MGO. Harmane preferably formed via the Pictet–Spengler condensation between Trp and acetaldehyde, which further reduced acrylamide formation via the acrolein pathway.
Pyridine-Enabled C-N Bond Activation for the Rapid Construction of Amides and 4-Pyridylglyoxamides by Cooperative Palladium/Copper Catalysis
Song, Liangliang,Claessen, Sander,Van Der Eycken, Erik V.
, p. 8045 - 8054 (2020/07/15)
A pyridine-enabled C-N bond activation of peptidomimetics employing cooperative palladium/copper catalysis in water is developed. Diverse amides and 4-pyridylglyoxamides are simultaneously synthesized through two steps from commercially available materials in a rapid, environmentally friendly, and high atom-economical manner.
A Heterogeneous Ruthenium dmso Complex Supported onto Silica Particles as a Recyclable Catalyst for the Efficient Hydration of Nitriles in Aqueous Medium
Manrique, Ester,Ferrer, Ingrid,Lu, Changyong,Fontrodona, Xavier,Rodríguez, Montserrat,Romero, Isabel
, p. 8460 - 8470 (2019/07/03)
In the present work, we describe an efficient method for the covalent anchoring of a Ru-dmso complex onto two types of supports: mesoporous silica particles (SP) and silica coated magnetic particles (MSNP). First, we have prepared and characterized the molecular complexes containing the bidentate pyridylpyrazole ligands pypz-Me and pypz-CH2COOEt, with the formula [RuIICl2(pypz-R)(dmso)2] (R = Me, 1; CH2COOEt, 2). Complex 2 was anchored onto the silica supports, yielding the heterogeneous systems SP@2 and MSNP@2 which were fully characterized by IR, UV-vis, SEM, TEM, TGA, and XPS techniques. Hydration of representative nitriles has been tested with the molecular complexes and their SP@2 and MSNP@2 heterogeneous counterparts, in aqueous medium under neutral conditions. The heterogeneous catalysts display high yields and excellent selectivity values. Both systems can be reused throughout several cycles for benzonitrile and acrylonitrile substrates, without any significant loss in reactivity. The MSNP@2 material can be easily recovered by a magnet, facilitating its reusability.
Trash to treasure: Eco-friendly and practical synthesis of amides by nitriles hydrolysis in WepPA
Sun, Yajun,Jin, Weiwei,Liu, Chenjiang
supporting information, (2019/11/11)
The hydration of nitriles to amides in a water extract of pomelo peel ash (WEPPA) was realized with moderate to excellent yields without using external transition metals, bases or organic solvents. This reaction features a broad substrate scope, wide functional group tolerance, prominent chemoselectivity, and good reusability. Notably, a magnification experiment in this bio-based solvent at 100 mmol further demonstrated its practicability.
Pyrrolopyrimidine vs Imidazole-Phenyl-Thiazole Scaffolds in Nonpeptidic Dimerization Inhibitors of Leishmania infantum Trypanothione Reductase
Revuelto, Alejandro,Ruiz-Santaquiteria, Marta,De Lucio, Héctor,Gamo, Ana,Carriles, Alejandra A.,Gutiérrez, Kilian Jesús,Sánchez-Murcia, Pedro A.,Hermoso, Juan A.,Gago, Federico,Camarasa, María-José,Jiménez-Ruiz, Antonio,Velázquez, Sonsoles
, p. 873 - 891 (2019/05/16)
Disruption of protein-protein interactions of essential oligomeric enzymes by small molecules represents a significant challenge. We recently reported some linear and cyclic peptides derived from an α-helical region present in the homodimeric interface of Leishmania infantum trypanothione reductase (Li-TryR) that showed potent effects on both dimerization and redox activity of this essential enzyme. Here, we describe our first steps toward the design of nonpeptidic small-molecule Li-TryR dimerization disruptors using a proteomimetic approach. The pyrrolopyrimidine and the 5-6-5 imidazole-phenyl-thiazole α-helix-mimetic scaffolds were suitably decorated with substituents that could mimic three key residues (K, Q, and I) of the linear peptide prototype (PKIIQSVGIS-Nle-K-Nle). Extensive optimization of previously described synthetic methodologies was required. A library of 15 compounds bearing different hydrophobic alkyl and aromatic substituents was synthesized. The imidazole-phenyl-thiazole-based analogues outperformed the pyrrolopyrimidine-based derivatives in both inhibiting the enzyme and killing extracellular and intracellular parasites in cell culture. The most active imidazole-phenyl-thiazole compounds 3e and 3f inhibit Li-TryR and prevent growth of the parasites at low micromolar concentrations similar to those required by the peptide prototype. The intrinsic fluorescence of these compounds inside the parasites visually demonstrates their good permeability in comparison with previous peptide-based Li-TryR dimerization disruptors.
Water-soluble superbulky (η6- p -cymene) ruthenium(ii) amine: An active catalyst in the oxidative homocoupling of arylboronic acids and the hydration of organonitriles
Nirmala, Muthukumaran,Adinarayana, Mannem,Ramesh, Karupnaswamy,Maruthupandi, Mannarsamy,Vaddamanu, Moulali,Raju, Gembali,Prabusankar, Ganesan
supporting information, p. 15221 - 15230 (2018/09/29)
A phosphine free water-soluble superbulky amine-ruthenium-arene complex (2) encompassing 2,6-bis(diphenylmethyl)-4-methylaniline was synthesised in good yield. 2 was characterized by FT-IR, 1H NMR, and 13C NMR spectroscopies, TGA and elemental analyses. The structure of 2 was confirmed by a single-crystal X-ray diffraction study. The ruthenium centre in 2 adopts the pseudo-octahedral geometry due to the η6-p-cymene ring and bulky aniline ligand along with two chloro groups. Besides, complex 2 was efficaciously employed as a catalyst in the hydration of organonitriles to amides. This reaction proceeds efficiently for a wide range of substrates in an environmentally benign medium and is an economically reasonable synthetic route to amides in good yields. In addition, 2 acts as an excellent catalyst in the oxidative homocoupling of arylboronic acids in water. A range of arylboronic acids undergo a homocoupling reaction in the presence of catalyst 2 to yield symmetrical biaryls in reasonable to good yields.
Monomeric nickel hydroxide stabilized by a sterically demanding phosphorus-nitrogen PN3P-pincer ligand: synthesis, reactivity and catalysis
Yao, Changguang,Chakraborty, Priyanka,Aresu, Emanuele,Li, Huaifeng,Guan, Chao,Zhou, Chunhui,Liang, Lan-Chang,Huang, Kuo-Wei
, p. 16057 - 16065 (2018/11/30)
A terminal nickel hydroxide complex (PN3P)Ni(OH) (3) bearing the 2nd generation phosphorus-nitrogen PN3P-pincer ligand has been synthesized and structurally characterized. As a nucleophile, 3 reacts with CO to afford the hydroxycarbonyl complex 4, (PN3P)Ni(COOH). 3 can also activate CO2 and CS2 to produce nickel bicarbonate (PN3P)Ni(OCOOH) (5) and bimetallic dithiocarbonate [(PN3P)NiS]2CO (6) respectively, as well as to promote aryl isocyanate and isothiocyanate insertion into the Ni-OH bond to give the corresponding (PN3P)NiEC(O)NHAr complexes (E = O, 7; E = S, 8). In addition, 3 catalyzes the nitrile hydration to various amides with well-defined intermediates (PN3P)Ni-NHC(O)R (R = Me, 9; R = Ph, 10).