86-55-5Relevant articles and documents
Oxidation of Primary Alcohols and Aldehydes to Carboxylic Acids via Hydrogen Atom Transfer
Tan, Wen-Yun,Lu, Yi,Zhao, Jing-Feng,Chen, Wen,Zhang, Hongbin
supporting information, p. 6648 - 6653 (2021/09/08)
The oxidation of primary alcohols and aldehydes to the corresponding carboxylic acids is a fundamental reaction in organic synthesis. In this paper, we report a new chemoselective process for the oxidation of primary alcohols and aldehydes. This metal-free reaction features a new oxidant, an easy to handle procedure, high isolated yields, and good to excellent functional group tolerance even in the presence of vulnerable secondary alcohols and tert-butanesulfinamides.
Method for synthesizing 1-naphthoic acid from naphthalene and carbon dioxide
-
Paragraph 0012; 0014-0027, (2021/04/17)
The invention provides a method for synthesizing 1- naphthoic acid from naphthalene and carbon dioxide, which uses naphthalene as a raw material and Lewis acid as a catalyst, utilizes carbon dioxide as a resource, and directly performs carboxylation reaction to synthesize 1-naphthoic acid. According to the invention, the use of a heavy metal salt catalyst and an oxidizing agent in the traditional process of synthesizing the 1-naphthoic acid by oxidizing the 1-methylnaphthalene is avoided, the carbon dioxide greenhouse gas is introduced, the carbon dioxide is recycled, and the carbon dioxide is used as a carbon source of carboxyl and is subjected to high-selectivity direct carboxylation reaction with the naphthalene to synthesize the 1-naphthoic acid; the atom utilization rate is 100%; the invention has the advantages of high atom economy, no environmental pollution and industrial application prospect.
Aerobic oxidation of aldehydes to carboxylic acids catalyzed by recyclable ag/c3 n4 catalyst
Wu, Chaolong,Yao, Xiaoquan,Yu, Min,Zhou, Li,Zhu, Li
, p. 167 - 175 (2021/03/19)
The oxidation of aldehydes is an efficient methodology for the synthesis of carboxylic acids. Herein we hope to report a simple, efficient and recyclable protocol for aerobic oxidation of aldehydes to carboxylic acid by using C3N4 supported silver nanoparticles (Ag/C3N4) as a catalyst in aqueous solution under mild conditions. Under standard conditions, the corresponding carboxylic acids can be obtained in good to excellent yields. In addition, Ag/C3N4 is convenient for recovery and could be reused three times with satisfactory yields.
Fluorometric analysis of chlorite via oxidation of 9-anthracenecarboxaldehyde
Lee, Kang Min,Choi, Myung Gil,Yoo, Jae Hoon,Ahn, Sangdoo,Chang, Suk-Kyu
, (2021/05/03)
We investigated a simple fluorescence signaling method for the convenient analysis of a practical oxidant—chlorite—via the oxidation of 9-anthracenecarboxaldehyde to the corresponding carboxylic acid. 9-Anthracenecarboxaldehyde exhibited a marked ratiometric fluorescence signaling toward chlorite through manipulating its aggregation-induced emission property. The probe showed high chlorite-selectivity over other oxychlorine species as well as common metal ions, anions, and oxidants. Interference from a closely related oxidant, hypochlorite, was efficiently removed using DMSO as a scavenger. The proposed probe also exhibited a prominent ratiometric response through changes in UV–vis absorption behavior. Among the tested aromatic aldehydes (naphthaldehydes, anthracenecarboxaldehyde, and pyrenecarboxaldehyde), anthracene-based carboxaldehyde exhibited the most pronounced signaling contrast and the fastest signaling speed. The detection limit of chlorite determination was found to be 1.1 × 10–7 M. Exploitation of the probe for the convenient analysis of chlorite in tap water via a recovery test was conducted.
One-Pot Direct Oxidation of Primary Amines to Carboxylic Acids through Tandem ortho-Naphthoquinone-Catalyzed and TBHP-Promoted Oxidation Sequence
Kim, Hun Young,Oh, Kyungsoo,Si, Tengda
supporting information, p. 18150 - 18155 (2021/12/09)
Biomimetic oxidation of primary amines to carboxylic acids has been developed where the copper-containing amine oxidase (CuAO)-like o-NQ-catalyzed aerobic oxidation was combined with the aldehyde dehydrogenase (ALDH)-like TBHP-mediated imine oxidation protocol. Notably, the current tandem oxidation strategy provides a new mechanistic insight into the imine intermediate and the seemingly simple TBHP-mediated oxidation pathways of imines. The developed metal-free amine oxidation protocol allows the use of molecular oxygen and TBHP, safe forms of oxidant that may appeal to the industrial application.
Hydrolysis of amides to carboxylic acids catalyzed by Nb2O5
Siddiki,Rashed, Md. Nurnobi,Touchy, Abeda Sultana,Jamil, Md. A. R.,Jing, Yuan,Toyao, Takashi,Maeno, Zen,Shimizu, Ken-Ichi
, p. 1949 - 1960 (2021/03/26)
Hydrolysis of amides to carboxylic acids is an industrially important reaction but is challenging due to the difficulty of cleaving the resonance stabilized amidic C-N bond. Twenty-three heterogeneous and homogenous catalysts were examined in the hydrolysis of acetamide. Results showed that Nb2O5was the most effective heterogeneous catalyst with the greatest yield of acetic acid. A series of Nb2O5catalysts calcined at various temperatures were characterized and tested in the hydrolysis of acetamide to determine the effects of crystal phase and surface properties of Nb2O5on catalytic performance. The high catalytic performance observed was attributed mainly to the facile activation of the carbonyl bond by Lewis acid sites that function even in the presence of basic inhibitors (NH3and H2O). The catalytic studies showed the synthetic advantages of the present method, such as simple operation, catalyst recyclability, additive free, solvent free, and wide substrate scope (>40 examples; up to 95% isolated yield).
Palladium-Catalyzed Sequential Vinyl C–H Activation/Dual Decarboxylation: Regioselective Synthesis of Phenanthrenes and Cyclohepta[1,2,3-de]naphthalenes
Jiang, Guomin,Ye, Hao,Shi, Lei,Dai, Hong,Wu, Xin-Xing
supporting information, p. 9398 - 9402 (2021/12/09)
The application of a C(vinyl), C(aryl)-palladacycle from vinyl-containing substrates is challenging due to the interference of a reactive double bond in palladium catalysis. This Letter describes a [4 + 2] or [4 + 3] cyclization based on a C(vinyl), C(aryl)-palladacycle by employing α-oxocarboxylic acids as the insertion units under a palladium/air system. The reaction proceeded through the key vinyl C–H activation and dual decarboxylation sequence, forming phenanthrenes and cyclohepta[1,2,3-de]naphthalenes regioselectively in good yields. The synthetic versatility of this protocol is highlighted by the gram-scale synthesis and synthesizing functional material molecule.
Merging N-Hydroxyphthalimide into Metal-Organic Frameworks for Highly Efficient and Environmentally Benign Aerobic Oxidation
Wang, Man,Liang, Gan,Wang, Yunhao,Fan, Tao,Yuan, Baoling,Liu, Mingxian,Yin, Ying,Li, Liangchun
supporting information, p. 9674 - 9685 (2021/06/09)
Two highly efficient metal-organic framework catalysts TJU-68-NHPI and TJU-68-NDHPI have been successfully synthesized through solvothermal reactions of which the frameworks are merged with N-hydroxyphthalimide (NHPI) units, resulting in the decoration of pore surfaces with highly active nitroxyl catalytic sites. When t-butyl nitrite (TBN) is used as co-catalyst, the as-synthesized MOFs are demonstrated to be highly efficient and recyclable catalysts for a novel three-phase heterogeneous oxidation of activated C?H bond of primary and secondary alcohols, and benzyl compounds under mild conditions. Based on the high efficiency and selectivity, an environmentally benign system with good sustainability, mild conditions, simple work-up procedure has been established for practical oxidation of a wide range of substrates.
1,2-Dibutoxyethane-Promoted Oxidative Cleavage of Olefins into Carboxylic Acids Using O2 under Clean Conditions
Ou, Jinhua,Tan, Hong,He, Saiyu,Wang, Wei,Hu, Bonian,Yu, Gang,Liu, Kaijian
, p. 14974 - 14982 (2021/10/25)
Herein, we report the first example of an effective and green approach for the oxidative cleavage of olefins to carboxylic acids using a 1,2-dibutoxyethane/O2 system under clean conditions. This novel oxidation system also has excellent functional-group tolerance and is applicable for large-scale synthesis. The target products were prepared in good to excellent yields by a one-pot sequential transformation without an external initiator, catalyst, and additive.
Photochemical Control of the Mechanical and Adhesive Properties of Crystalline Molecular Solids
Blelloch, Nicholas D.,Mitchell, Haydn T.,Greenburg, Louisa C.,Van Citters, Douglas W.,Mirica, Katherine A.
, p. 6143 - 6154 (2021/11/01)
This paper describes a systematic investigation of the mechanical and adhesive properties of four novel photoresponsive crystalline molecular solids. Each molecular solid comprises a benzyl, naphthyl, or adamantyl scaffold modified with a nitrobenzyl photolabile protecting group. Mechanical and adhesive testing, which recorded shear strengths in the range of 50-150 kPa, provide a direct measurement of the strength of the interfacial intermolecular interactions present within these materials. These interactions were visualized and rationalized using X-ray diffraction techniques and light microscopy. Disruption of interfacial interactions is facilitated by light-induced deprotection of the nitrobenzyl group. Depending on the strategic selection of adhesive, UV irradiation may result in up to a 4-fold increase or in a complete elimination in the observed adhesive strength. The change in adhesion exhibited by each material is determined, in part, by the extent of the solid-state photoconversion, which ranges from 5% to 26%, as well as the relative strength of the interfacial interactions present before and after irradiation. This research demonstrates the ability to tailor the emergent macroscopic mechanical properties of crystalline materials through strategic molecular design.