592-41-6Relevant articles and documents
Role of Defects in Radiation Chemistry of Crystalline Organic Materials. 3. Geometrical and Electronic Structures of Alkene Radical Anion and Cation in Alkene/n-Alkane Mixed Crystals As Studied by ESR Spectroscopy
Matsuura, Kaoru,Muto, Hachizo,Nunome, Keichi
, p. 9481 - 9487 (1991)
An ESR study has been made in order to elucidate the electronic structures of alkene radical anion and cation, the former radical being first detected in the hexene/n-hexane mixed crystals irradiated at 4.2 K along with the cation.The present work extended to the hexene and butene isomers has resulted in evidence that both anions with vinylene and vinylidene groups have pyramidal structures with ?-character, which differ from the planar or twisted structures of corresponding cations.The proton hyperfine couplings of their anions were only about one-third as large asthose of the cations: A(two α-H) = 0.45, 0.1, -0.25 mT; a(two pairs of β-H) = 1.38 and 0.56 mT for the 3-hexene anion, and a(two α-H) = 1.3 mT and a(two pairs of β-H) = 4.6 and 2.9 mT for the cation.The differences in the geometrical structures and in the sizes of the proton couplings of the anion and cation radicals were discussed on the basis of a simple molecular orbital calculation.It has been found that the anion is stabilized by admixing 2s;C atomic orbitals (AO) with a lower core integral than 2p;C AO to the unpaired electron orbital and that the small β-proton couplings mainly originate from low extent of hyperconjugation due to a wide energy separation of C=C ?-antibonding and C-H pseudo-?-bonding orbitals.
Nickle-Schiff base covalently grafted to UiO-66-NH2 as heterogeneous catalyst for ethylene oligomerization
Chen, Liduo,Jin, Rui,Li, Cuiqin,Mao, Guoliang,Tan, Jinyan,Wang, Jun,Zhang, Na
, (2021/11/27)
Metal organic frameworks (MOFs) UiO-66-NH2 had been modified by reaction of pyridine-2-carboxaldehyde with the amino groups to form a pyridineimine that act as ligand of metal Ni. The UiO-66-NH2 grafted pyridineimine nickel catalyst of post synthetic modification was assessed by fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscope (SEM), inductively coupled plasma mass spectrometry (ICP-MS) and nitrogen adsorption–desorption, and the catalytic performance of the UiO-66-NH2 grafted pyridineimine nickel catalyst in ethylene oligomerization was investigated. The results showed that the catalyst structure, reaction temperature, Al/Ni molar ratio and reaction pressure had a significant effect on the catalytic activity and products selectivity. The catalytic activity of 3.76 × 105 g·(mol Ni·h)?1 and 75.94% selectivity of butene were obtained when the reaction temperature was 25 ℃, Al/Ni molar ratio was 1000 and reaction pressure was 1.2 MPa.
LIGANDS FOR PRODUCTION OF 1-HEXENE IN CHROMIUM ASSISTED ETHYLENE OLIGOMERIZATION PROCESS
-
Paragraph 0054-0056, (2022/01/12)
Catalyst compositions and processes for the oligomerization of ethylene to 1-hexene are described. The catalyst composition includes a triamino bisphospino (NPNPN) ligand system with specific phosphorous and nitrogen ligands. The terminal nitrogen atoms include linear alkyl hydrocarbons that differ in the number of carbon atoms by 3.
Ethylene oligomerization with 2-hydroxymethyl-5,6,7-trihydroquinolinyl-8-ylideneamine-Ni(II) chlorides
Xu, Lei,Li, Jiaxin,Lin, Wenhua,Ma, Yanping,Hu, Xinquan,Flisak, Zygmunt,Sun, Wen-Hua
, (2021/02/16)
A series of Ni complexes of the general formula [2-(MeOH)-8-{N(Ar)}C9H8N]NiCl2, where Ar = 2,6-Me2C6H3 in Ni1; 2,6-Et2C6H3 in Ni2; 2,6-i-Pr2C6H3 in Ni3; 2,4,6-Me3C6H2 in Ni4; 2,6-Et2-4-MeC6H2 in Ni5 and 2,4,6-t-Bu3C6H2 in Ni6 has been synthesized and characterized by elemental analysis and IR spectroscopy. On activation with MMAO or Et2AlCl, these complexes showed high activity in ethylene oligomerization, reaching 2.23 × 106 g·mol–1 (Ni) h–1 at 30 °C with the Al/Ni ratio of 5500 and 9.11 × 105 g·mol–1 (Ni) h–1 with the Al/Ni of 800, respectively. Moreover, the content of α-C4 indicated high selectivity exceeding 99% in the Ni/Et2AlCl system. Comparing with the previous report by our group, this work discloses higher activity, presumably due to the substituent at the 2-position within the ligand influencing the steric hindrance around the metal atom. Furthermore, it is worth noting that the branched alkenes have been observed (iso-C6: 35.3 – 57.2%) in the oligomerization products.
Phosphorus and nitrogen-doped palladium nanomaterials support on coral-like carbon materials as the catalyst for semi-hydrogenation of phenylacetylene and mechanism study
Ma, Lei,Jiang, Pengbo,Wang, Kaizhi,Lan, Kai,Huang, Xiaokang,Yang, Ming,Gong, Li,Jia, Qi,Mu, Xiao,Xiong, Yucong,Li, Rong
, (2021/02/26)
In this work, two types of polyporous and coral-like materials (CN) with high specific surface area are prepared using sodium glutamate as a carrier. At the same time, a CN-supported phosphorus-nitrogen-doped palladium nanomaterial CN-P-Pd is synthesized and applied to the preparation of styrene by selective hydrogenation of phenylacetylene under mild conditions. As shown in the TEM images, Pd nanoparticles with a particle size of about 4.4 nm are uniformly dispersed on the surface of the carrier. The results of N2 adsorption–desorption reveal that the surface area of the prepared catalyst (CN-P-Pd) is 1307 m2g?1. In addition, the experimental exploration shows the intervention of P in carbon-nitrogen materials can contribute to improve the selectivity of the reaction, which can be attributed to the fact that P element can change the electron density of Pd. Meanwhile, it is found that the solvent not only affects the activity of catalyst, but also the selectivity of the reaction. Kinetic study shows the activation energy of the reaction is 4.5 kJ/mol. With the increase of the reaction temperature, the dissolution rate of hydrogen in the solvent gradually slows down, which inhibits the progress of the reduction reaction. Mechanistic studies demonstrate that the carbon-nitrogen materials have strong adsorption capacity for substrates, and also provide more adsorption sites for phenylacetylene. Additionally, the optimal catalyst (CN-P-Pd) also has high reaction activity to other alkynes and the conversion can reach at 95%. Moreover, the optimal catalyst can be reused several times without significant reduction in reaction activity.
Precursor Nuclearity and Ligand Effects in Atomically-Dispersed Heterogeneous Iron Catalysts for Alkyne Semi-Hydrogenation
Faust Akl, Dario,Ruiz-Ferrando, Andrea,Fako, Edvin,Hauert, Roland,Safonova, Olga,Mitchell, Sharon,López, Núria,Pérez-Ramírez, Javier
, p. 3247 - 3256 (2021/05/31)
Nanostructuring earth-abundant metals as single atoms or clusters of controlled size on suitable carriers opens new routes to develop high-performing heterogeneous catalysts, but resolving speciation trends remains challenging. Here, we investigate the potential of low-nuclearity iron catalysts in the continuous liquid-phase semi-hydrogenation of various alkynes. The activity depends on multiple factors, including the nuclearity and ligand sphere of the metal precursor and their evolution upon interaction with the mesoporous graphitic carbon nitride scaffold. Density functional theory predicts the favorable adsorption of the metal precursors on the scaffold without altering the nuclearity and preserving some ligands. Contrary to previous observations for palladium catalysts, single atoms of iron exhibit higher activity than larger clusters. Atomistic simulations suggest a central role of residual carbonyl species in permitting low-energy paths over these isolated metal centers.
Seed-mediated Growth of Alloyed Ag-Pd Shells toward Alkyne Semi-hydrogenation Reactions under Mild Conditions?
Zheng, Yuqin,Tan, Taixing,Wang, Cheng
, p. 3071 - 3078 (2021/09/13)
Ag@Ag-Pdx core-shell nanocomposites with various Ag/Pd ratio were deposited on Ag nanoplates using a seed growth method. When physically loaded on C3N4, Ag@Ag-Pd0.077/C3N4 with optimized Ag/Pd ratio could accomplish high catalytic performance for the semi-hydrogenation of phenylacetylene as well as other aliphatic (both terminal and internal alkynes) alkynes and phenylcycloalkynes containing functional groups (such as ester, hydroxyl, ethyl groups) under room temperature and 1 atm H2. The alloying and ensemble effects are used to interpret such catalytic performance.
Rhodium-Catalyzed Regioselective Hydroformylation of Alkynes to α,β-Unsaturated Aldehydes Using Formic Acid
Fan, Chao,Hou, Jing,Chen, Yu-Jia,Ding, Kui-Ling,Zhou, Qi-Lin
supporting information, p. 2074 - 2077 (2021/04/05)
A rhodium-catalyzed hydroformylation of alkynes with formic acid was developed. The method provides α,β-unsaturated aldehydes in high yield and E-selectivity without the need to handle toxic CO gas.
Enantiopure 2,9-Dideuterodecane – Preparation and Proof of Enantiopurity
Christoffers, Jens,Eru?ar, Gülsera,Fsadni, Miriam H.,Golding, Bernard T.,Mitschke, Nico,Roberts, Amy R.,Sadeghi, Majid M.,Wilkes, Heinz
, p. 3854 - 3863 (2021/08/24)
(R,R)- and (S,S)-(2,9-2H2)-n-Decane were prepared regio- and stereospecifically in 25–26 % yield over five steps from commercially available enantiopure (R)- and (S)-propylene oxide, respectively. The synthetic procedure involved nucleophilic displacement of (R)- and (S)-4-toluenesulfonic acid 1-methyl-4-pentenyl ester with LiAlD4 to furnish the respective (5-2H)-1-hexenes. Subsequent olefin metathesis and reduction of the double bond furnished the title compounds. The optical purity of (R,R)- and (S,S)-(2,9-2H2)-n-decane could not be determined by chromatography or polarimetry. Therefore, (R,R)- and (R,S)-(5-2H)-3-hydroxy-2-hexanone were prepared from their respective hexenes by Wacker oxidation, followed by enantioselective α-hydroxylation. The enantiopurity could then be determined by NMR spectroscopy because the stereospecifically deuterated hydroxyketones showed separated signals for the subterminal carbon atom (C-5) in the 13C NMR spectrum.
Faujasite silicalites for oxidative dehydrogenation of n-octane: Influence of alkali metals, gallium, and boron on catalyst activity
Ndlela, Siyabonga S.,Friedrich, Holger B.,Cele, Mduduzi N.
, (2021/02/05)
The sol-gel method was used to synthesize faujasite type silicalites bearing gallium and boron in the framework. Barium and sodium were used as charge balancing cations since isomorphic substitution of Si4+ by Ga3+ or B3+ results in a negative excess charge of the framework. The successful synthesis of this type of silicalites (GaBaY-S, BBaY-S, GaBBaY-S(IE), GaNaY-S) was confirmed using powder-XRD. SEM analysis showed that the morphology of the catalysts with respect to particle size depended on the framework metals and the charge balancing cation used. Framework Ga containing catalysts showed smaller particle size compared to B containing catalysts. Sodium also yielded a smaller particle-sized catalyst compared to barium. The catalysts were tested in the continuous flow oxidative dehydrogenation (ODH) of n-octane, and the catalytic results showed dependence on the active metal reducibility and acid-base character of the catalysts. At iso-conversion of 8 ± 1 %, the least acidic BBaY-S gave the highest selectivity to octenes (40 %) and the lowest selectivity to COx (28 %), and the most acidic GaNaY-S showed the opposite results with octenes at 17 % and COx at 56 %. The catalysts (BaBY-S and GaBBaY-S(IE) with least total acidity had the greatest quantity of strong acid sites which were attributed to Lewis acid sites, confirmed by the pyridine IR analysis. The GaNaY-S, with the highest total acidity, had the least strong acid sites.