611-73-4Relevant articles and documents
Oxidation of α-Hydroxy Acids by an Oxidation-active Flavin Mimic bearing a Bipyridin-6-ylmethyl Moiety in the Presence of Zn2+ and a Base in tert-Butyl Alcohol
Yano, Yumihiko,Mitsui, Keita,Ohsawa, Youichi,Kobayashi, Toshitada,Nabeshima, Tatsuya
, p. 1719 - 1721 (1993)
A benzo-dipteridine (BDP) having a bipyridin-6-ylmethyl moiety oxidizes α-hydroxy acids to give α-keto acids in the presence of Zn2+ and Et3N in t-BuOH, whereas a BDP bearing a bipyridin-5-ylmethyl moiety is unable to oxidize them under the sam
Biosynthesis of Phenylglyoxylic Acid by LhDMDH, a Novel d -Mandelate Dehydrogenase with High Catalytic Activity
Tang, Cun-Duo,Shi, Hong-Ling,Xu, Jian-He,Jiao, Zhu-Jin,Liu, Fei,Ding, Peng-Ju,Shi, Hong-Fei,Yao, Lun-Guang,Kan, Yun-Chao
, p. 2805 - 2811 (2018)
d-Mandelate dehydrogenase (DMDH) has the potential to convert d-mandelic acid to phenylglyoxylic acid (PGA), which is a key building block in the field of chemical synthesis and is widely used to synthesize pharmaceutical intermediates or food additives.
One-Pot Synthesis of Phenylglyoxylic Acid from Racemic Mandelic Acids via Cascade Biocatalysis
Tang, Cun-Duo,Ding, Peng-Ju,Shi, Hong-Ling,Jia, Yuan-Yuan,Zhou, Mao-Zhi,Yu, Hui-Lei,Xu, Jian-He,Yao, Lun-Guang,Kan, Yun-Chao
, p. 2946 - 2953 (2019)
Phenylglyoxylic acid (PGA) are key building blocks and widely used to synthesize pharmaceutical intermediates or food additives. However, the existing synthetic methods for PGA generally involve toxic cyanide and complex processes. To explore an alternati
Photoinduced homolytic decarboxylative acylation/cyclization of unactivated alkenes with α-keto acid under external oxidant and photocatalyst free conditions: access to quinazolinone derivatives
Sun, Bin,Shi, Rongcheng,Zhang, Kesheng,Tang, Xiaoli,Shi, Xiayue,Xu, Jiayun,Yang, Jin,Jin, Can
supporting information, p. 6050 - 6053 (2021/06/21)
A novel and green strategy for the synthesis of acylated quinazolinone derivativesviaphoto-induced decarboxylative cascade radical acylation/cyclization of quinazolinone bearing unactivated alkenes has been developed. The protocol provides a novel route to access acyl radicals from α-keto acids through a self-catalyzed energy transfer process. Most importantly, the reaction proceeded smoothly without any external photocatalyst, additive or oxidant, and could be easily scaled-up in flow conditions with sunlight irradiation.
Hypervalent Iodine(III)-Promoted Radical Oxidative C-H Annulation of Arylamines with α-Keto Acids
Long, Lipeng,Wang, Jieyan,Gu, Liuqing,Yang, Shiguang,Qiao, Liang,Luo, Guotian,Chen, Zhengwang
supporting information, p. 12084 - 12092 (2021/08/24)
A novel catalyst-free radical oxidative C-H annulation reaction of arylamines with α-keto acids toward benzoxazin-2-ones synthesis under mild conditions was developed. This hypervalent iodine(III)-promoted process eliminated the use of a metal catalyst or additive with high levels of functional group tolerance. Hypervalent iodine(III) was both an oxidant and a radical initiator for this reaction. The synthetic utility of this method was confirmed by the synthesis of the natural product cephalandole A.
Novel peptidomimetic peptide deformylase (PDF) inhibitors of Mycobacterium tuberculosis
Gokhale, Kunal M.,Telvekar, Vikas N.
, p. 148 - 156 (2020/08/26)
Emergence of MDR-TB and XDR-TB led to the failure of available anti-tubercular drugs. In order to explore, identify and develop new anti-tubercular drugs, novel peptidomimetic series of Mtb–peptide deformylase (PDF) inhibitors was designed and synthesized. In vitro antimycobacterial potential of compounds was established by screening of compounds against Mycobacterium tuberculosis H37Rv strain using MABA. Among them, ester series of compounds 4a, 4b, 4c, 4d, and 4e were found most active, with compound 4c being highly active and exhibiting minimum inhibitory concentration of 6.25?μg/ml against M.?tb H37Rv strain. Additionally, the compounds were docked to determine the probable binding interactions and understand the mechanism of action of most active molecules on Mtb-peptide deformylase (PDF), which is involved in the mycobacterium protein synthesis.
Possible competitive modes of decarboxylation in the annulation reactions ofortho-substituted anilines and arylglyoxylates
Laha, Joydev K.,Panday, Surabhi,Tomar, Monika,Patel, Ketul V.
supporting information, p. 845 - 853 (2021/02/09)
Annulation reactions ofortho-substituted anilines and arylglyoxylates in the presence of K2S2O8at 80 °C under metal-free neutral conditions have been investigated, which extended a platform for the tandem synthesis of nitrogen heterocycles. While arylglyoxylic acids are known to undergo decarboxylation to form an acyl radical in the presence of K2S2O8and used in the Minisci acylation of electron-deficient (hetero)aromatics, their reactions with electron-richortho-substituted anilines to form nitrogen heterocycles have recently been studied. Depending upon the experimental conditions used in the reactions, the mechanism of the formation of heterocycles involving reactions of an acyl radical or aryl iminocarboxylic acids has been postulated. Given the subtle understanding of the mechanisms of annulation reactions of 2-substituted anilines and arylglyoxylates in the presence of K2S2O8, an extensive mechanistic investigation was undertaken. In the current study, the various mechanistic pathways including the generation of acyl, imidoyl, aminal, and N,O-hemiketal radicals have been postulated based on different possible decarboxylation modes. Some of the proposed intermediates are supported based on the available analytical data. The protocol uses a single, inexpensive reagent K2S2O8, which offers not only transition-metal-free conditions but also serves as the reagent for the key decarboxylation step. Taken together, this study complements the current development of the annulation reactions of 2-substituted anilines and arylglyoxylates in terms of synthesis and mechanistic understanding.
K2S2O8mediated synthesis of 5-Aryldipyrromethanes and meso-substituted A4-Tetraarylporphyrins
Laha, Joydev K.,Hunjan, Mandeep Kaur
, p. 664 - 673 (2021/06/03)
The synthesis of dipyrromethanes from pyrrole and arylglyoxylic acids in the presence of K2S2O8at 90 C is reported affording dipyrromethanes in very good yields. Unlike an excess pyrrole traditionally used in dipyrromethane synthesis, the current method uses a stoichiometric amount of pyrrole avoiding any use of Br?nsted or Lewis acid. A gram scale synthesis of 5-phenyldipyrromethane is also achieved demonstrating potential scale up of dipyrromethanes using this method feasible. Subsequently, dipyrromethanes were converted to A4tetraarylporphyrins also in the presence of K2S2O8at 90C. A direct synthesis of A4-tetraphenylporphyrin from excess pyrrole and phenylglyoxylic acid in the presence of K2S2O8 at 90C is also reported.
K2S2O8activation by glucose at room temperature for the synthesis and functionalization of heterocycles in water
Hunjan, Mandeep Kaur,Laha, Joydev K.
supporting information, p. 8437 - 8440 (2021/09/02)
While persulfate activation at room temperature using glucose has primarily been focused on kinetic studies of the sulfate radical anion, the utilization of this protocol in organic synthesis is rarely demonstrated. We reinvestigated selected K2S2O8-mediated known organic reactions that invariably require higher temperatures and an organic solvent. A diverse, mild functionalization and synthesis of heterocycles using the inexpensive oxidant K2S2O8 in water at room temperature is reported, demonstrating the sustainability and broad scope of the method. Unlike traditional methods used for persulfate activation, the current method uses naturally abundant glucose as a K2S2O8 activator, avoiding the use of higher temperature, UV light, transition metals or bases.
Diazotrifluoroethyl Radical: A CF3-Containing Building Block in [3 + 2] Cycloaddition
Zhao, Wen-Wen,Shao, Yong-Chao,Wang, An-Ni,Huang, Jia-Li,He, Chun-Yang,Cui, Bao-Dong,Wan, Nan-Wei,Chen, Yong-Zheng,Han, Wen-Yong
supporting information, p. 9256 - 9261 (2021/12/06)
We present herein a visible-light-induced [3 + 2] cycloaddition of a hypervalent iodine(III) reagent with α-ketoacids for the construction of 5-CF3-1,3,4-oxadiazoles that are of importance in medicinal chemistry. The reaction proceeds smoothly without a photocatalyst, metal, or additive under mild conditions. Different from the well-established trifluorodiazoethane (CF3CHN2), the diazotrifluoroethyl radical [CF3C(·)N2], a trifluoroethylcarbyne (CF3C?:) equivalent and an unusual CF3-containing building block, is involved in the present reaction system.