112-52-7Relevant articles and documents
Mechanism of dichlorination of n-dodecane and chlorination of 1-chlorododecane adsorbed on ZSM-5 zeolite molecular sieves. A supramolecular structural interpretation
Turro, Nicholas J.,Han, Nianhe,Lei, Xue-Gong,Fehlner, James R.,Abrams, Lloyd
, p. 4881 - 4893 (1995)
The product distributions produced by the photoinduced dichlorination of n-dodecane (nD) and the photoinduced monochlorination of 1-chlorododecane (1CD) adsorbed on two pentasil zeolites (silicalite and LZ-105) have been investigated. The results are explained in terms of a supramolecular model for which the mobile and diffusing chlorination reagents (Cl?/Cl2) enter the zeolite particle from the external surface and diffuse preferentially along the linear channels of the zeolite internal surface that contain immobile adsorbed nD (or 1CD) molecules. The model assumes that the outermost layer of adsorbed substrates is attacked preferentially, that the attack occurs at the proximal end of adsorbed nD molecules closest to the external surface, and that, after the first chlorination, the substrate molecules in an inner layer are protected from chlorination by "blocking" molecules parked in the outer layer. The model describes each substrate molecule adsorbed on the internal surface in terms of supramolecular isomeric structures that are capable of characterizing the specific void space sites occupied by the substrate. A detailed analysis of the results allows the conclusion that the compensating cations tend to be preferentially located in the zigzag channels rather than in the linear channels or intersections and that the variation of selectivity of chlorination with experimental conditions results from redistribution of the isomeric supramolecular structures.
Photochlorination of n-Alkanes Adsorbed on Pentasil Zeolites
Turro, Nicholas J.,Fehlner, James R.,Hessler, Diane P.,Welsh, Kevin M.,Ruderman, Warren,et al.
, p. 3731 - 3735 (1988)
The photochlorination of n-alkanes adsorbed on pentasil zeolites proceeds with up to a 20-fold greater selectivity for the monochlorination of terminal methyl groups compared to the selectivity observed when the reaction is carried out in a homogeneous solution.This enhanced selectivity, which provides a novel means of synthesizing terminally functionalized linear alkanes, was found to be a function of the percent loading of the alkane on the zeolite, the zeolite's silicon to aluminum ratio, the percent conversion of the starting material, and the water content of the zeolite.
Catalytic remote hydrohalogenation of internal alkenes
Li, Xiang,Jin, Jianbo,Chen, Pinhong,Liu, Guosheng
, p. 425 - 432 (2022/02/07)
Primary alkyl halides have broad utility as fine chemicals in organic synthesis. The direct halogenation of alkenes is one of the most efficient approaches for the synthesis of these halides. Internal alkenes, in particular mixtures of isomers from refine
Lewis Base Catalysis Enables the Activation of Alcohols by means of Chloroformates as Phosgene Substitutes
Zoller, Ben,Stach, Tanja,Huy, Peter H.
, p. 5637 - 5643 (2020/09/21)
Nucleophilic substitutions (SN) are typically promoted by acid chlorides as sacrificial reagents to improve the thermodynamic driving force and lower kinetic barriers. However, the cheapest acid chloride phosgene (COCl2) is a highly toxic gas. Against this background, phenyl chloroformate (PCF) was discovered as inherently safer phosgene substitute for the SN-type formation of C?Cl and C?Br bonds using alcohols. Thereby, application of the Lewis bases 1-formylpyrroldine (FPyr) and diethylcyclopropenone (DEC) as catalysts turned out to be pivotal to shift the chemoselectivity in favor of halo alkane generation. Primary, secondary and tertiary, benzylic, allylic and aliphatic alcohols are appropriate starting materials. A variety of functional groups are tolerated, which includes even acid labile moieties such as tert-butyl esters and acetals. Since the by-product phenol can be isolated, a recycling to PCF with inexpensive phosgene would be feasible on a technical scale. Eventually, a thorough competitive study demonstrated that PCF is indeed superior to phosgene and other substitutes.
Formamide-Catalyzed Nucleophilic Substitutions: Mechanistic Insight and Rationalization of Catalytic Activity
Hilt, Gerhard,Huy, Peter H.,Kohlmeyer, Corinna,Sch?fer, André
, p. 11567 - 11577 (2020/11/17)
Herein, detailed mechanistic investigations into formamide-catalyzed nucleophilic substitution (SN) of alcohols are reported. Alkoxyiminium chlorides and hexafluorophosphates were synthesized and characterized as a key intermediate of the catalytic cycle. The determination of reaction orders and control experiments indicated that the nucleophilic attack of the formamide catalyst onto the reagent BzCl is the rate-determining step. Linear free energy relationship revealed a correlation between the quantified Lewis basicity strength of formamides by means of 11B NMR spectroscopy and their catalytic activity in SN-transformations. The observed difference in catalytic ability was attributed to the natural bond order charge, dipole moment, and Sterimol parameter B5. Importantly, this rationalization enables the prediction of the capacity of formamides to promote SN-type transformations in general.
A General Catalytic Method for Highly Cost- and Atom-Efficient Nucleophilic Substitutions
Huy, Peter H.,Filbrich, Isabel
supporting information, p. 7410 - 7416 (2018/04/30)
A general formamide-catalyzed protocol for the efficient transformation of alcohols into alkyl chlorides, which is promoted by substoichiometric amounts (down to 34 mol %) of inexpensive trichlorotriazine (TCT), is introduced. This is the first example of a TCT-mediated dihydroxychlorination of an OH-containing substrate (e.g., alcohols and carboxylic acids) in which all three chlorine atoms of TCT are transferred to the starting material. The consequently enhanced atom economy facilitates a significantly improved waste balance (E-factors down to 4), cost efficiency, and scalability (>50 g). Furthermore, the current procedure is distinguished by high levels of functional-group compatibility and stereoselectivity, as only weakly acidic cyanuric acid is released as exclusive byproduct. Finally, a one-pot protocol for the preparation of amines, azides, ethers, and sulfides enabled the synthesis of the drug rivastigmine with twofold SN2 inversion, which demonstrates the high practical value of the presented method.
Systematic Evaluation of Sulfoxides as Catalysts in Nucleophilic Substitutions of Alcohols
Motsch, Sebastian,Schütz, Christian,Huy, Peter H.
supporting information, p. 4541 - 4547 (2018/09/13)
Herein, a method for the nucleophilic substitution (SN) of benzyl alcohols yielding chloro alkanes is introduced that relies on aromatic sulfoxides as Lewis base catalysts (down to 1.5 mol-%) and benzoyl chloride (BzCl) as reagent. A systematic screening of various sulfoxides and other sulfinyl containing Lewis bases afforded (2-methoxyphenyl)methyl sulfoxide as optimal catalyst. In contrast to reported formamide catalysts, sulfoxides also enable the application of plain acetyl chloride (AcCl) as reagent. In addition, it was demonstrated that weakly electrophilic carboxylic acid chlorides like BzCl promote Pummerer rearrangement of sulfoxides already at room temperature. This side-reaction also provided the explanation, why sulfoxide catalyzed SN-reactions of alcohols do not allow the effective production of aliphatic and electron deficient chloro alkanes. Comparison experiments provided further insight into the reaction mechanism.
Nucleophilic Substitutions of Alcohols in High Levels of Catalytic Efficiency
Stach, Tanja,Dr?ger, Julia,Huy, Peter H.
supporting information, p. 2980 - 2983 (2018/05/28)
A practical method for the nucleophilic substitution (SN) of alcohols furnishing alkyl chlorides, bromides, and iodides under stereochemical inversion in high catalytic efficacy is introduced. The fusion of diethylcyclopropenone as a simple Lewis base organocatalyst and benzoyl chloride as a reagent allows notable turnover numbers up to 100. Moreover, the use of plain acetyl chloride as a stoichiometric promotor in an invertive SN-type transformation is demonstrated for the first time. The operationally straightforward protocol exhibits high levels of stereoselectivity and scalability and tolerates a variety of functional groups.
Formamides as Lewis Base Catalysts in SNReactions—Efficient Transformation of Alcohols into Chlorides, Amines, and Ethers
Huy, Peter H.,Motsch, Sebastian,Kappler, Sarah M.
, p. 10145 - 10149 (2016/08/16)
A simple formamide catalyst facilitates the efficient transformation of alcohols into alkyl chlorides with benzoyl chloride as the sole reagent. These nucleophilic substitutions proceed through iminium-activated alcohols as intermediates. The novel method, which can be even performed under solvent-free conditions, is distinguished by an excellent functional group tolerance, scalability (>100 g) and waste-balance (E-factor down to 2). Chiral substrates are converted with excellent levels of stereochemical inversion (99 %→≥95 % ee). In a practical one-pot procedure, the primary formed chlorides can be further transformed into amines, azides, ethers, sulfides, and nitriles. The value of the method was demonstrated in straightforward syntheses of the drugs rac-Clopidogrel and S-Fendiline.
METHOD OF CONVERTING ALCOHOL TO HALIDE
-
Page/Page column 50; 132; 134; 158, (2017/01/02)
The present invention relates to a method of converting an alcohol into a corresponding halide. This method comprises reacting the alcohol with an optionally substituted aromatic carboxylic acid halide in presence of an N-substituted formamide to replace a hydroxyl group of the alcohol by a halogen atom. The present invention also relates to a method of converting an alcohol into a corresponding substitution product. The second method comprises: (a) performing the method of the invention of converting an alcohol into the corresponding halide; and (b) reacting the corresponding halide with a nucleophile to convert the halide into the nucleophilic substitution product.