88-09-5Relevant articles and documents
Ruthenium-catalysed hydroxycarbonylation of olefins
Dühren, Ricarda,Kucmierczyk, Peter,Jackstell, Ralf,Franke, Robert,Beller, Matthias
, p. 2026 - 2030 (2021/04/09)
State-of-the-art catalyst systems for hydroxy- and alkoxycarbonylations of olefins make use of palladium complexes. In this work, we report a complementary ruthenium-catalysed hydroxycarbonylation of olefins applying an inexpensive Ru-precursor (Ru3(CO)12) and PCy3as a ligand. Crucial for the success of this transformation is the use of hexafluoroisopropanol (HFIP) as the solvent in the presence of an acid co-catalyst (PTSA). Overall, moderate to good yields are obtained using aliphatic olefins including the industrially relevant substrate di-isobutene. This atom-efficient catalytic transformation provides straightforward access to various carboxylic acids from unfunctionalized olefins.
Synthesis of Acyclic Aliphatic Amides with Contiguous Stereogenic Centers via Palladium-Catalyzed Enantio-, Chemo- and Diastereoselective Methylene C(sp3)?H arylation
Deng, Yao-Ting,Ding, Yi,Han, Ye-Qiang,Kong, Ke-Xin,Shi, Bing-Feng,Wu, Le-Song,Yang, Xu
supporting information, p. 20455 - 20458 (2020/09/07)
The enantioselective desymmetrizing C?H activation of α-gem-dialkyl acyclic amides remains challenging because the availability of four chemically identical unbiased methylene C(sp3)?H bonds and increased rotational freedoms of the acyclic systems add tremendous difficulties for chemo- and stereocontrol. We have developed a method for the synthesis of acyclic aliphatic amides with α,β-contiguous stereogenic centers via PdII-catalyzed asymmetric arylation of unbiased methylene C(sp3)?H, in good yields and with high levels of enantio-, chemo- and diastereoselectivity (up to >99 % ee and >20:1 d.r.). Successive application of this method enables the sequential arylation of the gem-dialkyl groups with two different aryl iodides, giving a range of β-Ar1-β′-Ar2-aliphatic acyclic amides containing three contiguous stereogenic centers with excellent diastereoselectivity.
COMPOUNDS AND USES
-
Page/Page column 21, (2019/11/04)
The invention relates to novel compounds (I), the use of compounds in eliciting a pro-Th17 immune response and related aspects. Further provided are methods of production of said compounds (I).
Dehydrogenation of Alcohols to Carboxylic Acid Catalyzed by in Situ-Generated Facial Ruthenium- CPP Complex
Liu, Hui-Min,Jian, Lei,Li, Chao,Zhang, Chun-Chun,Fu, Hai-Yan,Zheng, Xue-Li,Chen, Hua,Li, Rui-Xiang
, p. 9151 - 9160 (2019/08/12)
A selective catalytic system for the dehydrogenation of primary alcohols to carboxylic acids using a facial ruthenium complex generated in situ from the [Ru(COD)Cl2]n and a hybrid N-heterocyclic carbene (NHC)-phosphine-phosphine ligand (CPP) has been first reported. The facial coordination model was unveiled by NMR analysis of the reaction mixture. Such a fac-ruthenium catalyst system exhibited high catalytic activity and stability, and a high turnover number of 20 000 could be achieved with catalyst loading as low as 0.002 mol %. The exceedingly high catalyst stability was tentatively attributed to both the anchoring role of NHC and the hemi-lability of phosphines. The catalytic system also features a wide substrate scope. In particular, the facial coordination of CPP ligands was found to be beneficial for sterically hindered alcohols, and ortho-substituted benzylic alcohols and bulky adamantanyl methanol as well as cholesterol were all found to be viable dehydrogenation substrates.
Organocatalyzed Aerobic Oxidation of Aldehydes to Acids
Dai, Peng-Fei,Qu, Jian-Ping,Kang, Yan-Biao
supporting information, p. 1393 - 1396 (2019/02/26)
The first example organocatalyzed aerobic oxidation of aldehydes to carboxylic acids in both organic solvent and water under mild conditions is developed. As low as 5 mol % N-hydroxyphthalimide was used as the organocatalyst, and molecular O2 was used as the sole oxidant. No transition metals or hazardous oxidants or cocatalysts were involved. A wide range of carboxylic acids bearing diverse functional groups were obtained from aldehydes, even from alcohols, in high yields.
Mild C-H functionalization of alkanes catalyzed by bioinspired copper(ii) cores
Kirillova, Marina V.,Fernandes, Tiago A.,André, Vania,Kirillov, Alexander M.
supporting information, p. 7706 - 7714 (2019/08/30)
Three new copper(ii) coordination compounds formulated as [Cu(H1.5bdea)2](hba)·2H2O (1), [Cu2(μ-Hbdea)2(aca)2]·4H2O (2), and [Cu2(μ-Hbdea)2(μ-bdca)]n (3) were generated by aqueous medium self-assembly synthesis from Cu(NO3)2, N-butyldiethanolamine (H2bdea) as a main N,O-chelating building block and different carboxylic acids [4-hydroxybenzoic (Hhba), 9-anthracenecarboxylic (Haca), or 4,4′-biphenyldicarboxylic (H2bdca) acid] as supporting carboxylate ligands. The structures of products range from discrete mono- (1) or dicopper(ii) (2) cores to a 1D coordination polymer (3), and widen a family of copper(ii) coordination compounds derived from H2bdea. The obtained compounds were applied as bioinspired homogeneous catalysts for the mild C-H functionalization of saturated hydrocarbons (cyclic and linear C5-C8 alkanes). Two model catalytic reactions were explored, namely the oxidation of hydrocarbons with H2O2 to a mixture of alcohols and ketones, and the carboxylation of alkanes with CO/S2O82- to carboxylic acids. Both processes proceed under mild conditions with a high efficiency and the effects of different parameters (e.g., reaction time and presence of acid promoter, amount of catalyst and solvent composition, substrate scope and selectivity features) were studied and discussed in detail. In particular, an interesting promoting effect of water was unveiled in the oxidation of cyclohexane that is especially remarkable in the reaction catalyzed by 3, thus allowing a potential use of diluted, in situ generated solutions of hydrogen peroxide. Moreover, the obtained values of product yields (up to 41% based on alkane substrate) are very high when dealing with the C-H functionalization of saturated hydrocarbons and the mild conditions of these catalytic reactions (50-60 °C, H2O/CH3CN medium). This study thus contributes to an important field of alkane functionalization and provides a notable example of new Cu-based catalytic systems that can be easily generated by self-assembly from simple and low-cost chemicals.
Carboxylation of benzylic and aliphatic C-H bonds with CO2 induced by light/ketone/nickel
Ishida, Naoki,Masuda, Yusuke,Imamura, Yuuya,Yamazaki, Katsushi,Murakami, Masahiro
supporting information, p. 19611 - 19615 (2019/12/24)
A photoinduced carboxylation reaction of benzylic and aliphatic C-H bonds with CO2 is developed. Toluene derivatives capture gaseous CO2 at the benzylic position to produce phenylacetic acid derivatives when irradiated with UV light in the presence of an aromatic ketone, a nickel complex, and potassium tert-butoxide. Cyclohexane reacts with CO2 to furnish cyclohexanecar-boxylic acid under analogous reaction conditions. The present photoinduced carboxylation reaction provides a direct access from readily available hydrocarbons to the corresponding carboxylic acids with one carbon extension.
A aldehyde or mellow directly converted into the carboxylic acid (by machine translation)
-
Paragraph 0033; 0034, (2018/08/03)
The invention discloses a aldehyde or mellow oxidation can be directly transformed into carboxylic acid, is characterized in that the pure oxygen environment, in N - hydroxy imide compound under the catalysis of the imide compound or N - hydroxy and nitrous acid ester compound common under the catalysis, the CH2 OH and CHO oxidation directly converted into the carboxylic acid compounds. The invention using oxygen as the oxidizing agent, does not add any metal catalyst, environment-friendly, high catalytic efficiency, simple and convenient operation. With the previous metal catalytic system complex and different catalytic system, has some metal catalytic system in the process, the use of transition metal will cause the transition metal of the residual, the invention adopts the non-metallic catalytic system, environmental protection, preventing the metal residue problem, this to the solution of the drug in the synthesis of transition metal residue problem and provides a new method of thinking. (by machine translation)
Three-component 1D and 2D metal phosphonates: structural variability, topological analysis and catalytic hydrocarboxylation of alkanes
Demadis, Konstantinos D.,Anagnostou, Zafeiria,Panera, Aggeliki,Mezei, Gellert,Kirillova, Marina V.,Kirillov, Alexander M.
, p. 17788 - 17799 (2017/03/30)
Herein, we report the use of diphosphonate building blocks and chelating auxiliary N,N-ligands to generate novel polymeric architectures. Specifically, we report new 1D and 2D coordination polymers incorporating three components: transition metal ions (Co2+, Cu2+, Mn2+ or Zn2+), diphosphonate ligands (methane-diphosphonate, MDPA, or 1,2-ethanediphosphonate, EDPA) and N,N-heterocyclic chelators (1,10-phenanthroline, phen, or 2,2′-bipyridine, bpy). Six compounds were isolated under mild synthesis (ambient temperature) conditions: [Cu2(phen)2(EDPA)2(H2O)4]∞ (1), [Co(phen)(EDPA)(H2O)2]∞ (1a), {[Cu(phen)(MDPA)]·H2O]}∞ (2), [Mn(bpy)(EDPA)(H2O)2]∞ (3), [Zn(bpy)(EDPA)]∞ (4), and, lastly, a discrete Ni2+ molecular derivative [Ni(phen)(H2O)4](EDPA) (5). Synthetic details, crystal structures, and intermolecular interactions (π-π stacking and hydrogen bonding) in 1-5 are discussed. Topological analyses and classification of the underlying metal-organic networks in 1-4 were performed, revealing the uninodal 1D chains with the 2C1 topology in 1-3 and the binodal 2D layers with the 3,4L13 topology in 4. In 1-3 and 5, multiple hydrogen bonds lead to the extension of the structures to give 3D H-bonded nets with the seh-4,6-C2/c topology in 1 and 3, 2D H-bonded layers with the 3,5L52 topology in 2, and a 3D H-bonded net with the 6,6T1 topology in 5. The catalytic activity of compounds 1 and 1a was evaluated in a single-step hydrocarboxylation of cyclic and linear C5-C8 alkanes to furnish the carboxylic acids with one more carbon atom. These reactions proceed in the presence of CO, K2S2O8, and H2O at 60 °C in MeCN/H2O medium. Compound 1 showed higher activity than 1a and was studied in detail. Substrate scope was investigated, revealing that cyclohexane and n-pentane are the most reactive among the cyclic and linear C5-C8 alkanes, and resulting in the total yields of carboxylic acids (based on substrate) of up to 43 and 36%, respectively. In the case of cycloalkane substrates, only one cycloalkanecarboxylic acid is produced, whereas a series of isomeric monocarboxylic acids is generated when using linear alkanes; an increased regioselectivity at the C(2) position of the hydrocarbon chain was also observed.
New preparation method of 2-ethylbutyric acid
-
, (2017/07/21)
The invention provides a new preparation method of 2-ethylbutyric acid. The preparation method includes the steps of: performing a reaction to propyl aldehyde and ethyl magnesium halide to prepare 3-pentanol; preparing 3-halogenated pentane from the 3-pentanol; preparing a Grignard reagent from the 3-halogenated pentane, and performing a reaction with CO2 to prepare the 2-ethylbutyric acid. The synthesis route is represented as follows. The method employs easy-to-obtained raw materials and is high in atom economy and low in industrial cost, thereby avoiding some defects in conventional methods.