873-76-7Relevant articles and documents
Hydrogenation of Esters by Manganese Catalysts
Li, Fu,Li, Xiao-Gen,Xiao, Li-Jun,Xie, Jian-Hua,Xu, Yue,Zhou, Qi-Lin
, (2022/01/13)
The hydrogenation of esters catalyzed by a manganese complex of phosphine-aminopyridine ligand was developed. Using this protocol, a variety of (hetero)aromatic and aliphatic carboxylates including biomass-derived esters and lactones were hydrogenated to primary alcohols with 63–98% yields. The manganese catalyst was found to be active for the hydrogenation of methyl benzoate, providing benzyl alcohol with turnover numbers (TON) as high as 45,000. Investigation of catalyst intermediates indicated that the amido manganese complex was the active catalyst species for the reaction. (Figure presented.).
Disproportionation of aliphatic and aromatic aldehydes through Cannizzaro, Tishchenko, and Meerwein–Ponndorf–Verley reactions
Sharifi, Sina,Sharifi, Hannah,Koza, Darrell,Aminkhani, Ali
, p. 803 - 808 (2021/07/20)
Disproportionation of aldehydes through Cannizzaro, Tishchenko, and Meerwein–Ponndorf–Verley reactions often requires the application of high temperatures, equimolar or excess quantities of strong bases, and is mostly limited to the aldehydes with no CH2 or CH3 adjacent to the carbonyl group. Herein, we developed an efficient, mild, and multifunctional catalytic system consisting AlCl3/Et3N in CH2Cl2, that can selectively convert a wide range of not only aliphatic, but also aromatic aldehydes to the corresponding alcohols, acids, and dimerized esters at room temperature, and in high yields, without formation of the side products that are generally observed. We have also shown that higher AlCl3 content favors the reaction towards Cannizzaro reaction, yet lower content favors Tishchenko reaction. Moreover, the presence of hydride donor alcohols in the reaction mixture completely directs the reaction towards the Meerwein–Ponndorf–Verley reaction. Graphic abstract: [Figure not available: see fulltext.].
Homoleptic cobalt(II) phenoxyimine complexes for hydrosilylation of aldehydes and ketones without base activation of cobalt(II)
Hori, Momoko,Ishikawa, Ryuta,Koga, Yuji,Matsubara, Kouki,Mitsuyama, Tomoaki,Shin, Sayaka
, p. 1379 - 1387 (2021/05/29)
Air-stable, easy to prepare, homoleptic cobalt(II) complexes bearing pendant-modified phenoxyimine ligands were synthesized and determined. The complexes exhibited high catalytic performance for reducing aldehydes and ketones via catalytic hydrosilylation, where a hydrosilane and a catalytic amount of the cobalt(II) complex were added under base-free conditions. The reaction proceeded even in the presence of excess water, and excellent functional-group tolerance was observed. Subsequent hydrolysis gave the alcohol in high yields. Moreover, H2O had a critical role in activation of the Co(II) catalyst with hydrosilane. Several additional results also indicated that the cobalt(II) center acts as an active catalyst in the hydrosilylation of aldehydes and ketones.
Sodium Aminodiboranate, a New Reagent for Chemoselective Reduction of Aldehydes and Ketones to Alcohols
Wang, Jin,Guo, Yu,Li, Shouhu,Chen, Xuenian
supporting information, p. 1104 - 1108 (2021/05/25)
Sodium aminodiboranate (NaNH 2(BH 3) 2, NaADBH) is a new member of the old borane family, which exhibits superior performance in chemoselective reduction. Experimental results show that NaADBH can rapidly reduce aldehydes and ketones to the corresponding alcohols in high efficiency and selectivity under mild conditions. There are little steric and electronic effects on this reduction.
Efficient Solvent-Free Hydrosilylation of Aldehydes and Ketones Catalyzed by Fe2(CO)9/C6H4-o-(NCH2PPh2)2BH
Fang, Fei,Chang, Jiarui,Zhang, Jie,Chen, Xuenian
, p. 3509 - 3515 (2021/03/16)
An efficient solvent-free catalyst system for hydrosilylation of aldehydes and ketones was developed based on iron pre-catalyst Fe2(CO)9/C6H4-o-(NCH2PPh2)2BH. The reactions were tolerant of many functional groups and the corresponding alcohols were isolated in good to excellent yields following basic hydrolysis of the reaction products. The reaction is likely catalyzed by an in situ generated pincer ligated iron hydride complex. Graphic Abstract: [Figure not available: see fulltext.]
Synthesis, crystal and structural characterization, Hirshfeld surface analysis and DFT calculations of three symmetrical and asymmetrical phosphonium salts
Delaram, Behnaz,Gholizadeh, Mostafa,Makari, Faezeh,Nokhbeh, Seyed Reza,Salimi, Alireza
, (2021/07/01)
Three stable phosphonium salts of 1,4-butanediylebis(triphenylphosphonium) dibromide I, butane-4?bromo-1-(triphenylphosphonium) bromide II and 1,3-propanediylbis(triphenylphosphonium) tetrahydroborate III were synthesized and structurally characterized. Single crystal X-ray diffraction analysis, spectroscopic methods and thermal analysis methods were used for the characterization of titled compounds. Crystallographic data showed that compound I crystallized in the triclinic crystal system with Pī space group and compound II crystallized in the monoclinic crystal system with P21/c space group. The crystal packing structures of I and II were stabilized by various intermolecular interactions, especially of C–H···π contacts. The molecular Hirshfeld surface analysis and 2D fingerprint revealed that the C···H contacts have 24.3% and 18.4% contributions in the crystal packings of compounds I and II, respectively. In addition, the H···Br (28.5%) contact has a considerable contribution to the crystal architecture of compound II. Theoretical studies were performed by DFT method to investigate the structural properties of the titled compounds. The isotopic ratio of boron in tetrahydroborate anion of compound III calculated by 1H NMR spectroscopy. The isotopic ratio for 10B/11B was 19.099 / 80.900%. Reduction of some carbonyl compounds to corresponding alcohols was performed by compound III and the optimum conditions were determined.
A mild and selective Cu(II) salts-catalyzed reduction of nitro, azo, azoxy, N-aryl hydroxylamine, nitroso, acid halide, ester, and azide compounds using hydrogen surrogacy of sodium borohydride
Kalola, Anirudhdha G.,Prasad, Pratibha,Mokariya, Jaydeep A.,Patel, Manish P.
supporting information, p. 3565 - 3589 (2021/10/12)
The first mild, in situ, single-pot, high-yielding well-screened copper (II) salt-based catalyst system utilizing the hydrogen surrogacy of sodium borohydride for selective hydrogenation of a broad range of nitro substrates into the corresponding amine under habitancy of water or methanol like green solvents have been described. Moreover, this catalytic system can also activate various functional groups for hydride reduction within prompted time, with low catalyst-loading, without any requirement of high pressure or molecular hydrogen supply. Notably, this system explores a great potential to substitute expensive traditional hydrogenation methodologies and thus offers a greener and simple hydrogenative strategy in the field of organic synthesis.
A method of synthesis of alcohols
-
Paragraph 0067-0072, (2022/01/10)
The present invention belongs to the field of organic synthesis technology, specifically a synthesis method of an alcohol; the present invention is under the catalytic action of tert-butanol lithium, with ester compounds and pinacol borane as raw materials, tetrahydrofuran as a solvent, reacted at 100 ° C for 24h, followed by adding 2mol / LNaOH / MeOH solution, stirred at room temperature overnight to obtain alcohol compounds; the raw materials of the present invention are of extensive sources or easy to prepare, the reaction conditions are relatively mild and do not require a large number of / cumbersome additives, in addition to the tert-butanol lithium catalyst is simple, And the prepared alcohol compounds are of high quality and high separation yield.
Redox-active ligand based Mn(i)-catalyst for hydrosilylative ester reduction
Chakraborty, Soumi,Das, Arpan,Mandal, Swadhin K.
supporting information, p. 12671 - 12674 (2021/12/04)
Herein a Mn(i) catalyst bearing a redox-active phenalenyl (PLY) based ligand is reported for the efficient hydrosilylation of esters to alcohols using the inexpensive silane source polymethylhydrosiloxane (PMHS) under mild conditions. Mechanistic investigations suggest a strong ligand-metal cooperation where a ligand-based single electron transfer (SET) process initiates the reaction through Si-H bond activation.
Hydroboration Reaction and Mechanism of Carboxylic Acids using NaNH2(BH3)2, a Hydroboration Reagent with Reducing Capability between NaBH4and LiAlH4
Wang, Jin,Ju, Ming-Yue,Wang, Xinghua,Ma, Yan-Na,Wei, Donghui,Chen, Xuenian
, p. 5305 - 5316 (2021/04/12)
Hydroboration reactions of carboxylic acids using sodium aminodiboranate (NaNH2[BH3]2, NaADBH) to form primary alcohols were systematically investigated, and the reduction mechanism was elucidated experimentally and computationally. The transfer of hydride ions from B atoms to C atoms, the key step in the mechanism, was theoretically illustrated and supported by experimental results. The intermediates of NH2B2H5, PhCH= CHCOOBH2NH2BH3-, PhCH= CHCH2OBO, and the byproducts of BH4-, NH2BH2, and NH2BH3- were identified and characterized by 11B and 1H NMR. The reducing capacity of NaADBH was found between that of NaBH4 and LiAlH4. We have thus found that NaADBH is a promising reducing agent for hydroboration because of its stability and easy handling. These reactions exhibit excellent yields and good selectivity, therefore providing alternative synthetic approaches for the conversion of carboxylic acids to primary alcohols with a wide range of functional group tolerance.