- Confirmation by trapping, synthesis, and reactivity of 2,3-dehydro-N-methylmorpholine (DNMM)
-
The elusive 4-methyl-3,4-dihydro-2H-[1,4]oxazine (2,3-dehydro-N-methylmorpholine, DNMM, 5) was confirmed to occur as degradation product of N-methylmorpholine-N-oxide (1) by trapping with the α-tocopherol-derived ortho-quinone methide in a hetero-Diels-Alder reaction with inverse electron demand. The regioselectivity of the addition was in good agreement with DFT computational data. An authentic sample of 5 was synthesized from formmorpholide (16) via 2-methoxy-formmorpholide in 38% overall yield.
- Liebner, Falk,Schmid, Peter,Adelw?hrer, Christian,Rosenau, Thomas
-
-
Read Online
- Additive-free selective methylation of secondary amines with formic acid over a Pd/In2O3 catalyst
-
Formic acid is used as the sole carbon and hydrogen source in the methylation of aromatic and aliphatic amines to methylamines. The reaction proceeds via a formylation/transfer hydrogenation pathway over a solid Pd/In2O3 catalyst without the need for any additive.
- Benaissa, Idir,Cantat, Thibault,Genre, Caroline,Godou, Timothé,Pinault, Mathieu
-
-
- Nickel-Catalyzed Amination of Aryl Chlorides with Amides
-
A nickel-catalyzed amination of aryl chlorides with diverse amides via C-N bond cleavage has been realized under mild conditions. A broad substrate scope with excellent functional group tolerance at a low catalyst loading makes the protocol powerful for synthesizing various aromatic amines. The aryl chlorides could selectively couple to the amino fragments rather than the carbonyl moieties of amides. Our protocol complements the conventional amination of aryl chlorides and expands the usage of inactive amides.
- Li, Jinpeng,Huang, Changyu,Wen, Daheng,Zheng, Qingshu,Tu, Bo,Tu, Tao
-
supporting information
p. 687 - 691
(2021/01/09)
-
- Supported CuII Single-Ion Catalyst for Total Carbon Utilization of C2 and C3 Biomass-Based Platform Molecules in the N-Formylation of Amines
-
The shift from fossil carbon sources to renewable ones is vital for developing sustainable chemical processes to produce valuable chemicals. In this work, value-added formamides were synthesized in good yields by the reaction of amines with C2 and C3 biomass-based platform molecules such as glycolic acid, 1,3-dihydroxyacetone and glyceraldehyde. These feedstocks were selectively converted by catalysts based on Cu-containing zeolite 5A through the in situ formation of carbonyl-containing intermediates. To the best of our knowledge, this is the first example in which all the carbon atoms in biomass-based feedstocks could be amidated to produce formamide. Combined catalyst characterization results revealed preferably single CuII sites on the surface of Cu/5A, some of which form small clusters, but without direct linking via oxygen bridges. By combining the results of electron paramagnetic resonance (EPR) spin-trapping, operando attenuated total reflection (ATR) IR spectroscopy and control experiments, it was found that the formation of formamides might involve a HCOOH-like intermediate and .NHPh radicals, in which the selective formation of .OOH radicals might play a key role.
- Brückner, Angelika,Dai, Xingchao,Kreyenschulte, Carsten,Rabeah, Jabor,Shi, Feng,Wang, Xinzhi
-
p. 16889 - 16895
(2021/09/25)
-
- DMF·HCl as a versatile and straightforward N- and O-formylating agent
-
Inspired by the serendipitous isolation of N-formylpiperazines when we attempted the synthesis of a series of piperazines, we have developed a straightforward methodology for the N- and O- formylation of secondary cyclic amines, anilines and steroids, respectively. Such approach is based on the hitherto non-reported use of DMF·HCl complex, as a versatile and easily-available formylating system that can be stored without apparent loss of activity.
- Ramírez-Vázquez, Dulce G.,Vi?as-Bravo, Omar,Martínez-Pascual, Roxana,Pérez-Picaso, Lemuel,Castro-Cerritos, Karla Viridiana
-
supporting information
p. 585 - 592
(2020/11/19)
-
- Germyliumylidene: A Versatile Low Valent Group 14 Catalyst
-
Bis-NHC stabilized germyliumylidenes [RGe(NHC)2]+ are typically Lewis basic (LB) in nature, owing to their lone pair and coordination of two NHCs to the vacant p-orbitals of the germanium center. However, they can also show Lewis acidity (LA) via Ge?CNHC σ* orbital. Utilizing this unique electronic feature, we report the first example of bis-NHC-stabilized germyliumylidene [MesTerGe(NHC)2]Cl (1), (MesTer=2,6-(2,4,6-Me3C6H2)2C6H3; NHC= IMe4=1,3,4,5-tetramethylimidazol-2-ylidene) catalyzed reduction of CO2 with amines and arylsilane, which proceeds via its Lewis basic nature. In contrast, the Lewis acid nature of 1 is utilized in the catalyzed hydroboration and cyanosilylation of carbonyls, thus highlighting the versatile ambiphilic nature of bis-NHC stabilized germyliumylidenes.
- Sarkar, Debotra,Dutta, Sayan,Weetman, Catherine,Schubert, Emeric,Koley, Debasis,Inoue, Shigeyoshi
-
supporting information
p. 13072 - 13078
(2021/08/09)
-
- Olefin functionalized IPr.HCl monomer as well as preparation method and application thereof
-
The invention relates to an olefin functionalized IPr.HCl monomer, a preparation method thereof, a method for preparing an N-heterocyclic carbene functionalized organic polymer (PS-IPr-x) by using the olefin functionalized IPr.HCl monomer, and application of the N-heterocyclic carbene functionalized organic polymer as a heterogeneous catalyst for catalyzing reduction N-formylation of carbon dioxide and amine. A heterogeneous catalyst is prepared by using cheap and easily available DVB as a polymerization cross-linking agent through an AIBN-initiated olefin polymerization method, and has the advantages of low preparation cost and simple preparation method. Meanwhile, the catalytic activity of the catalyst is obviously higher than that of reported catalysts, and the catalyst has a wide practical application prospect.
- -
-
Paragraph 0069-0073; 0075
(2021/06/21)
-
- Highly Efficient and Selective N-Formylation of Amines with CO2 and H2 Catalyzed by Porous Organometallic Polymers
-
The valorization of carbon dioxide (CO2) to fine chemicals is one of the most promising approaches for CO2 capture and utilization. Herein we demonstrated a series of porous organometallic polymers could be employed as highly efficient and recyclable catalysts for this purpose. Synergetic effects of specific surface area, iridium content, and CO2 adsorption capability are crucial to achieve excellent selectivity and yields towards N-formylation of diverse amines with CO2 and H2 under mild reaction conditions even at 20 ppm catalyst loading. Density functional theory calculations revealed not only a redox-neutral catalytic pathway but also a new plausible mechanism with the incorporation of the key intermediate formic acid via a proton-relay process. Remarkably, a record turnover number (TON=1.58×106) was achieved in the synthesis of N,N-dimethylformamide (DMF), and the solid catalysts can be reused up to 12 runs, highlighting their practical potential in industry.
- Shen, Yajing,Zheng, Qingshu,Chen, Zhe-Ning,Wen, Daheng,Clark, James H.,Xu, Xin,Tu, Tao
-
supporting information
p. 4125 - 4132
(2021/01/12)
-
- Method for preparing formamide compound by using MCOF to catalyze CO2 as carbon source at normal temperature and pressure
-
The invention provides a method for preparing a formamide compound by using MCOF to catalyze CO2 as a carbon source at normal temperature and pressure, and belongs to the technical field of chemistry and chemical engineering. Under the conditions of normal temperature and normal pressure, CO2 is used as a carbon source to realize N-formylation reaction of various amine substrates. The method has the advantages that the reaction system uses the metal ion-doped two-dimensional covalent organic framework MCOF as the catalyst, CO2 is reduced at normal temperature and normal pressure to provide acyl, high-pressure hydrogen and toxic CO are prevented from being used, and the reaction conditions are mild (normal temperature and normal pressure). According to the method for preparing the formamide, the greenhouse gas carbon dioxide serves as a carbon source, the cost is low, operation is easy, reaction conditions are mild (normal temperature and normal pressure), the yield of the prepared formamide product is excellent (99%), and a green synthesis method is provided for N-acylation reaction.
- -
-
Paragraph 0037
(2021/06/09)
-
- A substituent- And temperature-controllable NHC-derived zwitterionic catalyst enables CO2upgrading for high-efficiency construction of formamides and benzimidazoles
-
Chemocatalytic upgrading of the greenhouse gas CO2 to valuable chemicals and biofuels has attracted broad attention in recent years. Among the reported approaches, N-formylation of CO2 with an amine is of great significance due to its versatility in the construction of N-containing linear and cyclic skeletons. Herein, a stable N-heterocyclic carbene-carboxyl adduct (NHC-CO2) was facilely prepared and could be used as a recyclable zwitterionic catalyst for efficient CO2 reductive upgrading via either N-formylation or further coupling with cyclization under mild conditions (25 °C, 1 atm CO2) using hydrosilane as a hydrogen source. More than 30 different alkyl and aromatic amines could be transformed into the corresponding formamides or benzimidazoles with remarkable yields (74%-98%). The electronic effect of the introduced substituent on NHC-CO2 was found to evidently affect the thermostability and nucleophilicity of the zwitterionic catalyst, which is directly correlated with its catalytic activity. Moreover, NHC-CO2 could supply CO2 by in situ decarboxylation at a specific temperature that is dependent on the introduced substituent type. Experimental and computational studies showed that the carboxyl species on NHC-CO2 was not only a nucleophilic center, but also a C1 source which rapidly captures or substitutes ambient CO2 during hydrosilylation. In addition, a simple and green conceptual process was designed for the product purification and catalyst recycling, with a good feasibility for small-scale production.
- Li, Hu,Li, Zhengyi,Wu, Hongguo,Yang, Song,Yu, Zhaozhuo,Zhang, Lilong,Zhu, Kaixun
-
supporting information
p. 5759 - 5765
(2021/08/23)
-
- Mesoporous Sn(IV) Doping DFNS Supported BaMnO3 Nanoparticles for Formylation of Amines Using Carbon Dioxide
-
Abstract: In the present paper, Sn(IV) doping DFNS (SnD) supported nanoparticles of BaMnO3 (BaMnO3/SnD) and using as a catalyst for the N-formylation of amines by CO2 hydrogenation. In this catalyst, the SnD with the ratios of Si/Sn in the range of from 6 to 50 were obtained with method of direct hydrothermal synthesis (DHS) as well as the nanoparticles of BaMnO3 were on the surfaces of SnD in situ reduced. Scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray energy dispersive spectroscopy (EDS), and transmission electron microscopy (TEM) were utilized for characterizing the nanostructures BaMnO3/SnD. It is found that the nanostructures of BaMnO3/SnD can be a nominate due to its effective and novel catalytic behavior in N-formylation of amines through hydrogenation of CO2. Graphic Abstract: [Figure not available: see fulltext.]
- Yang, Jie,Wang, Liujie,Sun, Aili,Zhiani, Rahele
-
p. 573 - 581
(2020/07/27)
-
- Bifunctional Ru-loaded Porous Organic Polymers with Pyridine Functionality: Recyclable Catalysts for N-Formylation of Amines with CO2 and H2
-
A series of pyridine functionalized porous organic polymers (POPs-Py&PPh3) have been synthesized by polymerizing tris(4-vinylphenyl)phosphane and 4-vinylpyridine. The pyridine moieties in the copolymer materials contribute to CO2 adsorption and promote the subsequent conversion of CO2. The POP supported Ru catalyst (Ru/POP3-Py&PPh3) shows a high catalytic activity (TON up to 710) in the N-formylation of various primary and secondary amines with CO2/H2, affording the corresponding formamides in good yields (55–95%) under mild reaction conditions. The heterogeneous catalyst can be easily separated from the reaction system and reused for at least eight cycles in the N-formylation of morpholine. (Figure presented.).
- Zhang, Kai,Zong, Lingbo,Jia, Xiaofei
-
supporting information
p. 1335 - 1340
(2021/02/05)
-
- Catalyst freeN-formylation of aromatic and aliphatic amines exploiting reductive formylation of CO2using NaBH4
-
Herein, we report a sustainable approach forN-formylation of aromatic as well as aliphatic amines using sodium borohydride and carbon dioxide gas. The developed approach is catalyst free, and does not need pressure or a specialized reaction assembly. The reductive formylation of CO2with sodium borohydride generates formoxy borohydride speciesin situ, as confirmed by1H and11B NMR spectroscopy. Thein situformation of formoxy borohydride species is prominent in formamide based solvents and is critical for the success of theN-formylation reactions. The formoxy borohydride is also found to promote transamidation reactions as a competitive pathway along with reductive functionalization of CO2with amine leading toN-formylation of amines.
- Kumar, Arun,Kumar, Yashwant,Mahajan, Dinesh,Sharma, Nidhi,Sharma, Pankaj
-
p. 25777 - 25787
(2021/08/05)
-
- Immobilized Zn(OAc)2on bipyridine-based periodic mesoporous organosilica for N -formylation of amines with CO2and hydrosilanes
-
Zinc acetate (Zn(OAc)2) was successfully immobilized on a bipyridine-based periodic mesoporous organosilica (BPy-PMO-TMS), as confirmed by solid-state NMR and energy-dispersive X-ray spectroscopies, X-ray diffractometry, and nitrogen adsorption/desorption isotherm analyses. The immobilized Zn complex, Zn(OAc)2(BPy-PMO-TMS), exhibited good catalytic activity during the N-formylations of amines and amides with CO2 and PhSiH3 to produce the corresponding formamides. Zn(OAc)2(BPy-PMO-TMS) with a lower Zn loading was found to exhibit higher catalytic activity.
- Lin, Xiao-Tao,Matsumoto, Kazuhiro,Maegawa, Yoshifumi,Takeuchi, Katsuhiko,Fukaya, Norihisa,Sato, Kazuhiko,Inagaki, Shinji,Choi, Jun-Chul
-
supporting information
p. 9501 - 9505
(2021/06/14)
-
- Ionization of Porous Hypercrosslinked Polymers for Catalyzing Room-Temperature CO2 Reduction via Formamides Synthesis
-
Porous materials with heterogeneous nature occupy a pivotal position in the chemical industry. This work described a facile pre- and post-synthetic approach to modify porous hypercrosslinked polymer with quaternary ammonium bromide, rendering it as efficient catalyst for CO2 conversion. The as-prepared porous ionic polymer (PiP@QA) displayed an improved specific surface area of 301 m2·g?1 with hierarchically porous structure, good selective adsorption of CO2, as well as high ion density. Accordingly, PiP@QA catalyst exhibited excellent catalytic performances for the solvent-free synthesis of various formamides from CO2, amines and phenylsilane under 35?°C and 0.5?MPa. We speculated that the superior catalytic efficiency and broad substrate scope of this catalyst could be resulted from the synergistic effect of flexible ionic sites with unique nanoporous channel that might increase the collision probability of reactants and active sites as well as enhance the diffusion of reactants and products during the reaction process. With the good reusability, PiP@QA was also available for the efficient conversion of simulated flue gas (15% CO2 in N2, v/v) into target formamides with quantitative selectivity at room temperature, which further highlighted its industrial application potential in chemical recycling the real-word CO2 to valuable products. Graphic Abstract: [Figure not available: see fulltext.].
- Ren, Qinggang,Chen, Yaju,Qiu, Yongjian,Tao, Leiming,Ji, Hongbing
-
p. 2919 - 2927
(2021/02/01)
-
- Copper-Catalyzed Formylation of Amines by using Methanol as the C1 Source
-
Cu/TEMPO catalyst systems are known for the selective transformation of alcohols to aldehydes, as well as for the simultaneous coupling of alcohols and amines to imines under oxidative conditions. In this study, such a Cu/TEMPO catalyst system is found to catalyze the N-formylation of a variety of amines by initial oxidative activation of methanol as the carbonyl source via formaldehyde and formation of N,O-hemiacetals and oxidation of the latter under very mild conditions. A vast range of amines, including aromatic and aliphatic, primary and secondary, and linear and cyclic amines are formylated under these conditions with good to excellent yields. Moreover, paraformaldehyde can be used instead of methanol for the N-formylation.
- Pichardo, Manuel Carmona,Tavakoli, Ghazal,Armstrong, Jessica E.,Wilczek, Tobias,Thomas, Bradley E.,Prechtl, Martin H. G.
-
p. 882 - 887
(2020/02/11)
-
- N-Formylation of amines using arylhydrazones of malononitrile and a Cu(II) complex under eco-friendly conditions at room temperature
-
In this work, we report the synthesis of formamides via solvent free N-formylation of amines using known arylhydrazones of malononitrile including sodium 2-(2-(dicyanomethylene)hydrazinyl)benzenesulfonate (I), 2-(2-(dicyanomethylene)hydrazinyl) benzoic acid (II) and its Cu(II) complex (III) as catalysts at room temperature. These catalysts are highly active and the scope of the method was investigated using several heterocyclic, aromatic and aliphatic amines as substrates, which produced the corresponding formamides in high yields. The remarkable advantages of this method are the elimination of toxic solvents, operational simplicity, easy workup procedure, excellent yields and avoidance of column chromatography.
- Nasrollahzadeh, Mahmoud,Bidgoli, Nayyereh Sadat Soheili,Rocha, Bruno G.M.,Pombeiro, Armando J.L.,Mahmudov, Kamran T.
-
-
- METHOD OF CARBON MONOXIDE FIXATION AND METHOD OF AMINE FORMYLATION
-
The present invention relates to a method for fixing carbon monoxide in a metal-free condition and a method for formating amine using the same.
- -
-
Paragraph 0078; 0081-0085; 0096-0098
(2021/02/19)
-
- Design of Lewis base functionalized ionic liquids for the N-formylation of amines with CO2 and hydrosilane: The cation effects
-
A series of functionalized ionic liquids (ILs) were developed for the reductive functionalization of CO2 with amine and hydrosilane to afford formamides under mild conditions. It was found that 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU)-based IL i.e. [DBUC12]Br showed high efficiency for the N-formylation reaction of amines without using any organic solvents or additives. Furthermore, control experiments suggested the cations with active hydrogen may weaken the nucleophilicity of anions through ion pairing interactions, thereby affecting the activation of hydrosilane. The reaction mechanism was then investigated by Density Functional Theory (DFT) calculations. This protocol represents a highly efficient and environmentally friendly example for catalytic conversion of CO2 into value-added chemicals such as formamide derivatives by employing DBU functionalized ILs.
- Li, Xiao-Ya,Fu, Hong-Chen,Liu, Xiao-Fang,Yang, Shu-Han,Chen, Kai-Hong,He, Liang-Nian
-
p. 563 - 569
(2020/02/05)
-
- N-Heterocyclic Carbene-Stabilized Germa-acylium Ion: Reactivity and Utility in Catalytic CO2Functionalizations
-
The first acceptor-free heavier germanium analogue of an acylium ion, [RGe(O)(NHC)2]X (R = MesTer = 2,6-(2,4,6-Me3C6H2)2C6H3; NHC = IMe4 = 1,3,4,5-tetramethylimidazol-2-ylidene; X = (Cl or BArF = {(3,5-(CF3)2C6H5)4B}), was isolated by reacting [RGe(NHC)2]X with N2O. Conversion of the germa-acylium ion to the first solely donor-stabilized germanium ester [(NHC)RGe(O)(OSiPh3)] and corresponding heavier analogues ([RGe(S)(NHC)2]X and [RGe(Se)(NHC)2]X) demonstrated its classical acylium-like behavior. The polarized terminal GeO bond in the germa-acylium ion was utilized to activate CO2 and silane, with the former found to be an example of reversible activation of CO2, thus mimicking the behavior of transition metal oxides. Furthermore, its transition-metal-like nature is demonstrated as it was found to be an active catalyst in both CO2 hydrosilylation and reductive N-functionalization of amines using CO2 as the C1 source. Mechanistic studies were undertaken both experimentally and computationally, which revealed that the reaction proceeds via an N-heterocyclic carbene (NHC) siloxygermylene [(NHC)RGe(OSiHPh2)].
- Sarkar, Debotra,Weetman, Catherine,Dutta, Sayan,Schubert, Emeric,Jandl, Christian,Koley, Debasis,Inoue, Shigeyoshi
-
supporting information
p. 15403 - 15411
(2020/10/20)
-
- Copper catalyzed: N-formylation of α-silyl-substituted tertiary N-alkylamines by air
-
A site-selective method to prepare N-formyl amines efficiently that relies on the copper(i)-catalyzed oxidation of α-silyl-substituted tertiary N-alkylamines by air at room temperature is described. The oxidative protocol was shown to exhibit excellent functional group tolerance as it was applicable to a wide variety of amine substrates and a number of bioactive molecules and natural products. Moreover, it delinates a ligand-and additive-free amine oxidation process mediated by a low-cost metal salt with oxygen from air taking on the role of both the terminal oxidant and as part of the formylation reagent, which is unprecedented in copper catalysis. It also offers the first synthetic method that can selectively generate α-amino radical species as reactive intermediates from α-silylamines under non-photochemical reaction conditions.
- Bruce, Lachlan David,Chan, Philip Wai Hong,Jin, Jianwen,Xia, Bo,Zhao, Yichao
-
supporting information
p. 5296 - 5302
(2020/09/17)
-
- Facile access to: N-formyl imide as an N-formylating agent for the direct synthesis of N-formamides, benzimidazoles and quinazolinones
-
N-Formamide synthesis using N-formyl imide with primary and secondary amines with catalytic amounts of p-toluenesulfonic acid monohydrate (TsOH·H2O) is described. This reaction is performed in water without the use of surfactants. Moreover, N-formyl imide is efficiently synthesized using acylamidines with TsOH·H2O in water. In addition, N-formyl imide was successfully used as a carbonyl source in the synthesis of benzimidazole and quinazolinone derivatives. Notable features of N-formylation of amines by using N-formyl imide include operational simplicity, oxidant- A nd metal-free conditions, structurally diverse products, and easy applicability to gram-scale operation.
- Huang, Hsin-Yi,Liang, Chien-Fu,Lin, Xiu-Yi,Yen, Shih-Yao
-
supporting information
p. 5726 - 5733
(2020/08/21)
-
- Some Transformations of Mono-and Dichloro(diethoxyphosphoryl)acetaldehydes
-
Addition of ethanol and diethyl phosphonate to the carbonyl group of 2,2-dichloro-2-(diethoxyphosphoryl)-acetaldehyde has been studied, and the corresponding α-chloro ether, acetal, and phosphorylated metrifonate have been obtained. α,α-Dichloro-α-phospho
- Allakhverdieva, G. E.,Ismailov, V. M.,Mamedov, I. A.,Sadykhova, N. D.,Yusubov, N. N.
-
-
- Process for Productions of Formamides and Acrylamides
-
This invention relates to performance chemicals field, it discloses a novel and green process for simultaneous productions of formamides as well as mono- and multi-functional acrylamides under very mild conditions and with high efficiency. These substances are widely useful as industrial solvents or raw materials, in particular acrylamides are important olefinically-unsaturated polymerizable monomers in photo-curing materials.
- -
-
Paragraph 0018; 0019; 0024-0027
(2020/02/27)
-
- Unprecedented Formation of 2,5-Diaminoquinones from the Reaction of Vanillin with Secondary Amines in Aerobic Conditions
-
Vanillin is widely used as a flavoring agent in foods, perfumes and in several other applications. Even if huge amounts of vanillin are annually employed in these manufacturing processes, its reactivity is underexplored, especially for the formation of potentially toxic substances. In this context, we observed the formation of orange to red crystalline compounds in the reaction of vanillin with secondary amines in aerobic conditions. NMR and HRMS allowed identifying the products as 2,5-diamino-1,4-benzoquinones. Preliminary investigations of this reaction led to a proposed mechanism involving an oxidative fragmentation of vanillin as the key step. MTT tests did not show any toxic effect up to 0.1 mm.
- Barbero, Mauro,Papillo, Valentina A.,Grolla, Ambra A.,Negri, Roberto,Travaglia, Fabiano,Bordiga, Matteo,Condorelli, Fabrizio,Arlorio, Marco,Giovenzana, Giovanni B.
-
supporting information
p. 136 - 139
(2019/12/27)
-
- Method for preparing formamide compound by catalyzing carbon dioxide hydrogenation with porous material
-
The invention belongs to the technical field of organic synthesis and heterogeneous catalysis, and particularly relates to a method for preparing a formamide compound by catalyzing carbon dioxide hydrogenation through a porous material. The method comprises the following steps: by taking a porous organic metal polymer as a catalyst, reacting an amine compound with carbon dioxide and hydrogen in anair atmosphere to prepare the formamide compound. The method has the advantages of high reaction efficiency, good selectivity, mild conditions, economy, environmental protection, simple operation andthe like; wherein a solid metal polymer material with large specific surface area, strong carbon dioxide adsorption, hierarchical pore channel distribution and highly dispersed metal centers is designed and synthesized as a reaction catalyst by changing a cross-linked copolymer proportion; the catalyst is especially used for catalytic synthesis of fine chemical N, N-dimethylformamide (DMF), doesnot need any additional solvent, alkali or other additives, and is convenient for separation and purification of DMF. The catalyst can be recycled; no special equipment is needed in the reaction, thereaction operation is simple, and further industrial application is facilitated.
- -
-
Paragraph 0123-0126
(2020/06/16)
-
- Building N-Heterocyclic Carbene into Triazine-Linked Polymer for Multiple CO2 Utilization
-
The development of new CO2 detection technologies and CO2 “capture-conversion” materials is of great significance due to the growing environmental crisis. Here, multifunctional triazine-linked polymers with built-in N-heterocyclic carbene (NHC) sites (designated as NHC-triazine@polymer) are presented for simultaneous CO2 detection, capture, activation, and catalytic conversion. NHC-triazine@polymer were readily obtained through polymerization of cyanophenyl-substituted NHC. The obtained film-like polymers exhibited interesting CO2-triggered fluorescence “turn-on” response and CO2-sensitive reversible color change. Both NHC and triazine sites could act as efficient binding sites for CO2, and the CO2 uptake of NHC and triazine reached 1.52 and 1.36 mmol g?1, respectively. Notably, after being captured by NHC, CO2 was activated into a zwitterionic adduct NHC?CO2 that could be easily transformed into cyclic carbonate in the presence of epoxides. Moreover, NHC-triazine@polymer were stable and active catalysts for the conversion of low-concentration CO2 in a gas mixture (7 vol %) into cyclic carbonates as well as for hydrosilylation of CO2 to formamides.
- Yue, Chengtao,Wang, Wenlong,Li, Fuwei
-
p. 5996 - 6004
(2020/10/06)
-
- Catalyst-free selective: N -formylation and N -methylation of amines using CO2 as a sustainable C1 source
-
We herein describe catalyst-free selective N-formylation and N-methylation of amines using CO2 as a sustainable C1 source. By tuning the reaction solvent and temperature, the selective synthesis of formamides and methylamines is achieved in good to excellent yields using sodium borohydride (NaBH4) as a sustainable reductant.
- Zou, Qizhuang,Long, Guangcai,Zhao, Tianxiang,Hu, Xingbang
-
supporting information
p. 1134 - 1138
(2020/03/11)
-
- UiO-66 as an efficient catalyst for N-formylation of amines with CO2 and dimethylamine borane as a reducing agent
-
The most effective way to make the best use of CO2, is the reductive formylation of amines, as formamides have many applications in industry. A new protocol has been developed for reductive N-formylation of amines with CO2 as a C1 carbon source and DMAB (Dimethylamine borane) as a reducing agent in the presence of Zr-containing metal–organic framework (MOF) as an efficient, heterogeneous recyclable catalyst. We used UiO-66 and UiO-66-NH2 as catalysts for N-formylation of amines and observed that both the catalyst performs equally. Therefore, we continued our studies with UiO-66 as a catalyst. The UiO-66 MOF shows good catalytic activity and affording the desired formamides in good to excellent yield. This catalytic system is very efficient for several amines including primary and secondary aliphatic cyclic and aromatic amines. Moreover, the prepared catalyst was recycled up to four recycled without a considerable decrease in catalytic activity.
- Phatake, Vishal V.,Mishra, Ashish A.,Bhanage, Bhalchandra M.
-
supporting information
(2019/12/11)
-
- L-Serine?ZnO as an efficient and reusable catalyst for synthesis of cyclic carbonates and formamides in presence of CO2 atmosphere
-
The highly efficient carbon dioxide (CO2) fixation into value-added organic carbonates has gained enormous attention in the last few decades. This work reports, synthesis and characterization of amino acids (AAs) assisted ZnO nano catalyst and Its application for the cyclic carbonates and formamides synthesis with CO2 atmosphere. The prepared catalysts are characterized by IR, SEM, TEM, XRD, DSC-TGA XPS analysis. L-Serine?ZnO exhibits excellent catalytic activity for transformation of CO2 into value-added chemicals namely formamides and cyclic carbonates. The catalytic systems which work in the presence of CO2 balloon atmosphere for the synthesis of cyclic carbonates are rarely explored. This catalytic system shows excellent activity under the CO2 balloon atmosphere for carbonate synthesis. The developed methodology demonstrates broad substrate scope as well as excellent functional group tolerance for carbonates and formamides synthesis. Additionally, the synthesized catalyst was recyclable up to five recycling runs without considerable loss in its catalytic activity, thus makes this protocol cost-effective and sustainable.
- Ahire, Jayendra P.,Bhanage, Bhalchandra M.,Phatake, Vishal V.
-
-
- Tetracoordinate borates as catalysts for reductive formylation of amines with carbon dioxide
-
We report sodium trihydroxyaryl borates as the first robust tetracoordinate organoboron catalysts for reductive functionalization of CO2. These catalysts, easily synthesized from condensing boronic acids with metal hydroxides, activate main group element-hydrogen (E-H) bonds efficiently. In contrast to BX3 type boranes, boronic acids and metal-BAr4 salts, under transition metal-free conditions, sodium trihydroxyaryl borates exhibit high reactivity of reductive N-formylation toward a variety of amines (106 examples), including those with functional groups such as ester, olefin, hydroxyl, cyano, nitro, halogen, MeS-, ether groups, etc. The over-performance to catalyze formylation of challenging pyridyl amines affords a promising alternative method to the use of traditional formylation reagents. Mechanistic investigation supports electrostatic interactions as the key for Si/B-H activation, enabling alkali metal borates as versatile catalysts for hydroborylation, hydrosilylation, and reductive formylation/methylation of CO2.
- Du, Chen-Xia,Huang, Zijun,Jiang, Xiaolin,Li, Yuehui,Makha, Mohamed,Wang, Fang,Zhao, Dongmei
-
supporting information
p. 5317 - 5324
(2020/09/17)
-
- A NHC-silyliumylidene cation for catalytic N?formylation of amines using carbon dioxide
-
This study describes the use of a silicon(II) complex, namely, the NHC-silyliumylidene cation complex [(IMe)2SiH]I (1, IMe =:C{N(Me)C(Me)}2), to catalyze the chemoselective N-formylation of primary and secondary amines using CO2 and PhSiH3 under mild conditions to afford the corresponding formamides as a sole product (average reaction time: 4.5 h; primary amines, average yield: 95%, average TOF: 8 h?1; secondary amines, average yield: 98%, average TOF: 17 h?1). The activity of 1 and product yields outperform the currently available non-transition-metal catalysts used for this catalysis. Mechanistic studies show that the silicon(II) center in complex 1 catalyzes the C?N bond formation via a different pathway in comparison with non-transition-metal catalysts. It sequentially activates CO2, PhSiH3, and amines, which proceeds via a dihydrogen elimination mechanism, to form formamides, siloxanes, and dihydrogen gas.
- Leong, Bi-Xiang,Teo, Yeow-Chuan,Condamines, Cloe,Yang, Ming-Chung,Su, Ming-Der,So, Cheuk-Wai
-
p. 14824 - 14833
(2020/12/21)
-
- Zinc Powder Catalysed Formylation and Urealation of Amines Using CO2 as a C1 Building Block?
-
Transformation of CO2 into valuable organic compounds catalysed by cheap and biocompatible metal catalysts is one of important topics of current organic synthesis and catalysis. Herein, we report the zinc powder catalysed formylation and urealation of amines with CO2 and (EtO)3SiH under solvent free condition. Using 2 molpercent zinc powder as the catalyst, a series of secondary amines, both the aromatic ones and the aliphatic ones, can be formylated into formamides. When primary aromatic amines were used as the substrates, the reactions produce urea derivatives. The electronic and steric effects from the substrates on the formylation and urealation reactions were observed and discussed. The recovery and reusability of zinc powder were investigated, showing the zinc powder can be reused in the formylation reaction without loss of catalytic activity. The analysis on the reactants/products mixture after filtering out the zinc powder showed the zinc concentration in the mixture is low to 1 ppm. The pathways for the formylation and urealation of amines with this catalytic system were also investigated, and related to the different substrates.
- Du, Chongyang,Chen, Yaofeng
-
p. 1057 - 1064
(2020/06/30)
-
- The synthesis of cyanoformamides via a CsF-promoted decyanation/oxidation cascade of 2-dialkylamino-malononitriles
-
A mild and efficient method for the synthesis of cyanoformamides from N,N-disubstituted aminomalononitriles with CsF as the promoter has been developed. This method features a wide substrate scope and high reaction efficiency, and will facilitate corresponding cyanoformamide-based biological studies and synthetic methodology development.
- Lei, Lin-Sheng,Xue, Cao-Gen,Xu, Xue-Tao,Jin, Da-Ping,Wang, Shao-Hua,Bao, Wen,Liang, Huan,Zhang, Kun,Asiri, Abdullah M.
-
supporting information
p. 3723 - 3726
(2019/04/17)
-
- Evaluation of thioamides, thiolactams and thioureas as hydrogen sulfide (H2S)donors for lowering blood pressure
-
Hydrogen sulfide (H2S)is a biologically important gaseous molecule that exhibits promising protective effects against a variety of pathological processes. For example, it was recognized as a blood pressure lowering agent. Aligned with the need for easily modifiable platforms for the H2S supply, we report here the preparation and the H2S release kinetics from a series of structurally diversified thioamides, thiolactams and thioureas. Three different thionation methods based on the usage of a phosphorus pentasulfide and Lawesson reagent were applied to prepare the target thioamides and thiolactams. Furthermore, obtained H2S donors were evaluated both in in vivo and in vitro studies. The kinetic parameters of the liberating H2S was determined and compared with NaHS and GYY4137 using two different detection technics i.e.; fluorescence labeling 7-azido-4-methyl-2H-chromen-2-one and 5,5‘-dithiobis (2-nitrobenzoic acid), sulfhydryl probe, also known as the Ellman's reagent. We have proved that the amount of releasing H2S from these compounds is controllable through structural modifications. Finally, the present study shows a hypotensive response to an intravenous administration of the developed donors in the anesthetized rats.
- Zaorska, Ewelina,Hutsch, Tomasz,Gawry?-Kopczyńska, Marta,Ostaszewski, Ryszard,Ufnal, Marcin,Koszelewski, Dominik
-
supporting information
(2019/04/29)
-
- Metal-free Carbon Monoxide (CO) Capture and Utilization: Formylation of Amines
-
The capture and utilization of CO by 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) were performed in the absence of transition-metal complexes. The reaction of TBD with CO afforded TBD-CO adducts, which were converted to formylated TBD (TBD-CHO). TBD-CO adducts may include an interaction of CO with positively charged species based on NMR and IR analysis. In the presence of amines, CO was transferred from TBD-CO to amines, producing formylated amines with good yields. The reaction mechanism involving TBD-CO adducts is presented based on theoretical calculations. (Figure presented.).
- Noh, Hyeong-Wan,An, Youngjoon,Lee, Seulchan,Jung, Jaehoon,Son, Seung Uk,Jang, Hye-Young
-
supporting information
(2019/04/26)
-
- Methyl-Selective α-Oxygenation of Tertiary Amines to Formamides by Employing Copper/Moderately Hindered Nitroxyl Radical (DMN-AZADO or 1-Me-AZADO)
-
Methyl-selective α-oxygenation of tertiary amines is a highly attractive approach for synthesizing formamides while preserving the amine substrate skeletons. Therefore, the development of efficient catalysts that can advance regioselective α-oxygenation at the N-methyl positions using molecular oxygen (O2) as the terminal oxidant is an important subject. In this study, we successfully developed a highly regioselective and efficient aerobic methyl-selective α-oxygenation of tertiary amines by employing a Cu/nitroxyl radical catalyst system. The use of moderately hindered nitroxyl radicals, such as 1,5-dimethyl-9-azanoradamantane N-oxyl (DMN-AZADO) and 1-methyl-2-azaadamanane N-oxyl (1-Me-AZADO), was very important to promote the oxygenation effectively mainly because these N-oxyls have longer life-times than less hindered N-oxyls. Various types of tertiary N-methylamines were selectively converted to the corresponding formamides. A plausible reaction mechanism is also discussed on the basis of experimental evidence, together with DFT calculations. The high regioselectivity of this catalyst system stems from steric restriction of the amine-N-oxyl interactions.
- Nakai, Satoru,Yatabe, Takafumi,Suzuki, Kosuke,Sasano, Yusuke,Iwabuchi, Yoshiharu,Hasegawa, Jun-ya,Mizuno, Noritaka,Yamaguchi, Kazuya
-
supporting information
p. 16651 - 16659
(2019/11/11)
-
- TBSOTf-promoted versatile N-formylation using DMF at room temperature
-
Hydrazides and amines were N-formylated by DMF in the presence of tert-butyldimethylsilyl triflate (TBSOTf) at room temperature, in good to excellent yields.
- Sakurai, Masayoshi,Kawakami, Rina,Kihara, Nobuhiro
-
supporting information
p. 1291 - 1294
(2019/04/10)
-
- NH4I-promoted N-acylation of amines via the transamidation of DMF and DMA under metal-free conditions
-
An unprecedented NH4I-promoted N-formylation and N-acetylization of various amines with dimethylformamide (DMF)and dimethylacetamide (DMA)has been developed. This protocol shows broad substrate scope for aromatic, aliphatic, and heterocyclic amines, which provides a metal-free strategy for N-acylation featuring mild reaction conditions, as well as inexpensive and readily available starting materials.
- Chen, Jiahui,Jia, Jing,Guo, Ziyi,Zhang, Jitan,Xie, Meihua
-
supporting information
p. 1426 - 1429
(2019/05/06)
-
- MXene (Ti3C2) Vacancy-Confined Single-Atom Catalyst for Efficient Functionalization of CO2
-
A central topic in single-atom catalysis is building strong interactions between single atoms and the support for stabilization. Herein we report the preparation of stabilized single-atom catalysts via a simultaneous self-reduction stabilization process at room temperature using ultrathin two-dimensional Ti3-xC2TyMXene nanosheets characterized by abundant Ti-deficit vacancy defects and a high reducing capability. The single atoms therein form strong metal-carbon bonds with the Ti3-xC2Ty support and are therefore stabilized onto the sites previously occupied by Ti. Pt-based single-atom catalyst (SAC) Pt1/Ti3-xC2Ty offers a green route to utilizing greenhouse gas CO2, via the formylation of amines, as a C1 source in organic synthesis. DFT calculations reveal that, compared to Pt nanoparticles, the single Pt atoms on Ti3-xC2Ty support feature partial positive charges and atomic dispersion, which helps to significantly decrease the adsorption energy and activation energy of silane, CO2, and aniline, thereby boosting catalytic performance. We believe that these results would open up new opportunities for the fabrication of SACs and the applications of MXenes in organic synthesis.
- Zhao, Di,Chen, Zheng,Yang, Wenjuan,Liu, Shoujie,Zhang, Xun,Yu, Yi,Cheong, Weng-Chon,Zheng, Lirong,Ren, Fuqiang,Ying, Guobing,Cao, Xing,Wang, Dingsheng,Peng, Qing,Wang, Guoxiu,Chen, Chen
-
supporting information
p. 4086 - 4093
(2019/02/26)
-
- Novel clamp metal complex and application thereof
-
The invention discloses a method for preparing a novel clamp-shaped complex and application of the novel clamp-shaped complex in the reaction of catalytic hydrogenation of carboxylic acid ester compounds to produce corresponding alcohols and reaction of carbon dioxide catalytic hydrogenation to form formamide compounds. Carboxylic acid esters and hydrogen as raw materials or carbon dioxide, hydrogen and amine compounds as raw materials are reacted in an organic solvent condition or a solvent-free condition in the presence of a transition metal complex as a catalyst to respectively form the corresponding alcohol compounds and/or corresponding formamide compounds. The method has the advantages of being high in reaction efficiency, good in selectivity, mild in conditions, economical, environmentally-friendly, and simple in operation, and has good promotion and application prospects.
- -
-
Paragraph 0186-0245
(2019/04/26)
-
- Selective synthesis of formamides, 1,2-bis(N-heterocyclic)ethanes and methylamines from cyclic amines and CO2/H2 catalyzed by an ionic liquid-Pd/C system
-
The reduction of CO2 with amines and H2 generally produces N-formylated or N-methylated compounds over different catalysts. Herein, we report the selective synthesis of formamides, 1,2-bis(N-heterocyclic)ethanes, and methylamines, which is achieved over an ionic liquid (IL, e.g., 1-butyl-3-methylimidazolium tetrafluoroborate, [BMIm][BF4])-Pd/C catalytic system. By simply varying the reaction temperature, formamides and methylamines can be selectively produced, respectively, in high yields. Interestingly, 1,2-bis(N-heterocyclic)ethanes can also be obtained via the McMurry reaction of the formed formamide coupled with subsequent hydrogenation. It was found that [BMIm][BF4] can react with formamide to form a [BMIm]+-formamide adduct; thus combined with Pd/C it can catalyze McMurry coupling of formamide in the presence of H2 to afford 1,2-bis(N-heterocyclic)ethane. Moreover, Pd/C-[BMIm][BF4] can further catalyze the hydrogenolysis of 1,2-bis(N-heterocyclic)ethane to access methylamine. [BMIm][BF4]-Pd/C was tolerant to a wide substrate scope, giving the corresponding formamides, 1,2-bis(N-heterocyclic)ethanes or methylamines in moderate to high yields. This work develops a new route to produce N-methylamine and opens the way to produce 1,2-bis(N-heterocyclic)ethane from cyclic amine as well.
- Li, Ruipeng,Zhao, Yanfei,Wang, Huan,Xiang, Junfeng,Wu, Yunyan,Yu, Bo,Han, Buxing,Liu, Zhimin
-
p. 9822 - 9828
(2019/11/11)
-
- Mild and facile synthesis of formamide: Reduction and functionalization of CO2 using NaBH(OAc)3 under atmospheric pressure
-
An approach for N-formylation of amines was developed using NaBH(OAc)3 as a reductant under an atmospheric pressure of CO2 at 50 °C. The corresponding formylated products of various amines, including aliphatic and aromatic amines, amines with reductive-sensitive nitro groups and alkynyl groups and benzamides were obtained in good to excellent yields, and the possible reaction mechanism was also proposed.
- Liu, Huan,Nie, Zhuang,Shao, Jiaan,Chen, Wenteng,Yu, Yongping
-
supporting information
p. 3552 - 3555
(2019/07/09)
-
- Eco-friendly acetylcholine-carboxylate bio-ionic liquids for controllable: N-methylation and N-formylation using ambient CO2 at low temperatures
-
Catalytic fixation of CO2 to produce valuable fine chemicals is of great significance to develop a green and sustainable circulation of excessive carbon in the environment. Herein, a series of non-toxic, biodegradable and recyclable acetylcholine-carboxylate bio-ionic liquids with different cations and anions were simply synthesized for producing formamides and methylamines using atmospheric CO2 as a carbon source, and phenylsilane as a hydrogen donor. The selectivity toward products was tuned by altering the reaction temperature under solvent or solvent-free conditions. N-Methylamines (ca. 96% yield) were obtained in acetonitrile at 50 °C, while N-formamides (ca. 99% yield) were attained without a solvent at 30 °C. The established bio-ionic liquid catalytic system found a wide range of applicability in substrates and possessed a high potentiality in scale-up to gram-grade production. The developed catalytic system was fairly stable, which could be easily reused without an apparent loss of reactivity, possibly due to the strong electrostatic interactions between the cation and anion. The combination of experimental and computational results explicitly elucidated the reaction mechanism: PhSiH3 activated by a bio-IL was favorable for the formation of silyl formate from hydrosilylation of CO2, followed by a reaction with an amine to give an N-formamide, while an N-methylamine was formed by further hydrosilylation of the N-formamide.
- Zhao, Wenfeng,Chi, Xiaoping,Li, Hu,He, Jian,Long, Jingxuan,Xu, Yufei,Yang, Song
-
supporting information
p. 567 - 577
(2019/02/14)
-
- Choline-based ionic liquids for CO2 capture and conversion
-
Choline-based ionic liquids (Ch-ILs) with anions possessing interacting sites to attract CO2 were designed, which could capture CO2 with capacity >1.0 mol CO2 per molar IL under ambient conditions. Moreover, this kind of ILs combining with CuCl could catalyze the formylation of amines with CO2/H2 at 120 °C. Especially, choline imidazolate showed the best performance, affording a series of N-formamides in excellent yields. It was demonstrated that the IL activated CO2 and the synergistic effect between the IL and CuCl resulted in the high activity for catalysing the formylation of amines with CO2/H2.
- Li, Ruipeng,Zhao, Yanfei,Li, Zhiyong,Wu, Yunyan,Wang, Jianji,Liu, Zhimin
-
p. 256 - 261
(2018/11/23)
-
- Selective formylation or methylation of amines using carbon dioxide catalysed by a rhodium perimidine-based NHC complex
-
Carbon dioxide can play a vital role as a sustainable feedstock for chemical synthesis. To be viable, the employed protocol should be as mild as possible. Herein we report a methodology to incorporate CO2 into primary, secondary, aromatic or alkyl amines catalysed by a Rh(i) complex bearing a perimidine-based NHC/phosphine pincer ligand. The periminide-based ligand belongs to a class of 6-membered NHC ligand accessed through chelate-assisted double C-H activation. N-Formylation and -methylation of amines were performed using a balloon of CO2, and phenylsilane as the reducing agent. Product selectivity between formylated and methylated products was tuned by changing the solvent, reaction temperature and the quantity of phenylsilane used. Medium to excellent conversions, as well as tolerance to a range of functional groups, were achieved. Stoichiometric reactions with reactants employed in catalysis and time course studies suggested that formylation and methylation reactions of interest begin with hydrosilylation of CO2 followed by reaction with amine substrates.
- Lam, Raphael H.,McQueen, Caitlin M. A.,Pernik, Indrek,McBurney, Roy T.,Hill, Anthony F.,Messerle, Barbara A.
-
supporting information
p. 538 - 549
(2019/02/14)
-
- Mn-Catalyzed Selective Double and Mono-N-Formylation and N-Methylation of Amines by using CO2
-
Functionalization of amines by using CO2 is of fundamental importance considering the abundance of amines and CO2. In this context, the catalytic formylation and methylation of amines represent convenient and successful protocols for selective CO2 utilization as a C1 building block. This study represents the first example of selective catalytic double N-formylation of aryl amines by using a dinuclear Mn complex in the presence of phenylsilane. This robust system also allows for selective formylation and methylation of amines under a range of conditions.
- Huang, Zijun,Jiang, Xiaolin,Zhou, Shaofang,Yang, Peiju,Du, Chen-Xia,Li, Yuehui
-
p. 3054 - 3059
(2019/04/10)
-
- Amine formylation with CO2 and H2 catalyzed by heterogeneous Pd/PAL catalyst
-
For the first time, Pd supported on natural palygorskite was developed for amine formylation with CO2 and H2. Both secondary and primary amines with diverse structures could be converted into the desired formamides at 100 °C, and good to excellent yields were obtained.
- Dai, Xingchao,Wang, Bin,Wang,Shi, Feng
-
p. 1141 - 1146
(2019/07/09)
-
- Topotactic Synthesis of Phosphabenzene-Functionalized Porous Organic Polymers: Efficient Ligands in CO2 Conversion
-
Progress toward the preparation of porous organic polymers (POPs) with task-specific functionalities has been exceedingly slow—especially where polymers containing low-oxidation phosphorus in the structure are concerned. A two-step topotactic pathway for the preparation of phosphabenzene-based POPs (Phos-POPs) under metal-free conditions is reported, without the use of unstable phosphorus-based monomers. The synthetic route allows additional functionalities to be introduced into the porous polymer framework with ease. As an example, partially fluorinated Phos-POPs (F-Phos-POPs) were obtained with a surface area of up to 591 m2 g?1. After coordination with Ru species, a Ru/F-Phos-POPs catalyst exhibited high catalytic efficiency in the formylation of amines (turnover frequency up to 204 h?1) using a CO2/H2 mixture, in comparison with the non-fluorinated analogue (43 h?1) and a Au/TiO2 heterogeneous catalysts reported previously (?1). This work describes a practical method for synthesis of porous organic phosphorus-based polymers with applications in transition-metal-based heterogeneous catalysis.
- Yang, Zhenzhen,Chen, Hao,Li, Bo,Guo, Wei,Jie, Kecheng,Sun, Yifan,Jiang, De-en,Popovs, Ilja,Dai, Sheng
-
supporting information
p. 13763 - 13767
(2019/08/21)
-
- Ethanol-mediated N-formylation of amines with CO2/H2 over cobalt catalysts
-
The CO2-involved synthesis of chemicals is of great significance from a green and sustainable point of view. Herein, we present an efficient Co-based catalytic system composed of a commercially available Co salt, the tetradentate phosphine ligand P-(CH2CH2PPh2)3, and a base, denoted as [Co]/PP3/base, for the synthesis of formamides via the formylation of amines with CO2/H2. It was indicated that the selectivity of products (i.e., formamide or methylamine) could be tuned to some extent via changing the solvent and the base. Using ethanol as the solvent, the Co(ClO4)2·6H2O/PP3/K2CO3 system showed high activity for the production of formamides, affording product yields of 82-95%, together with its broad substrate scope. Exploration of the reaction mechanism indicated that formamide was formed with HCOOH as the intermediate, while the methylamine byproduct was produced with HCHO as the intermediate via the hydrogenolysis of dialkylaminomethane.
- Liu, Zhenghui,Yang, Zhenzhen,Ke, Zhengang,Yu, Xiaoxiao,Zhang, Hongye,Yu, Bo,Zhao, Yanfei,Liu, Zhimin
-
p. 13933 - 13937
(2018/08/21)
-